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Basic Concepts

 Maximum CPU utilization obtained with 
multiprogramming

 CPU–I/O Burst Cycle – Process execution 
consists of a cycle of CPU execution and I/O 
wait.

 CPU burst distribution



Alternating Sequence of CPU 
And I/O Bursts



CPU Scheduler

 Selects from among the processes in memory that 
are ready to execute, and allocates the CPU to one 
of them.

 CPU scheduling decisions may take place when a 
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.
3. Switches from waiting to ready.
4. Terminates.

 Scheduling under 1 and 4 is nonpreemptive.
 All other scheduling is preemptive.



Dispatcher

 Dispatcher module gives control of the CPU 
to the process selected by the short-term 
scheduler; this involves:
 switching context
 switching to user mode
 jumping to the proper location in the user program 

to restart that program
 Dispatch latency – time it takes for the 

dispatcher to stop one process and start 
another running.



Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible
 Throughput – # of processes that complete their 

execution per time unit
 Turnaround time – amount of time to execute a 

particular process
 Waiting time – amount of time a process has been 

waiting in the ready queue
 Response time – amount of time it takes from when 

a request was submitted until the first response is 
produced, not output  (for time-sharing environment)



Optimization Criteria

 Max CPU utilization
 Max throughput
 Min turnaround time 
 Min waiting time 
 Min response time



First-Come, First-Served (FCFS) 
Scheduling
 Example: Process Burst Time

  P1  24
  P2   3

   P3     3 

 Suppose that the processes arrive in the order: P1 ,  P2 , P3  

The Gantt Chart for the schedule is:

 Waiting time for P1  = 0; P2  = 24; P3 = 27
 Average waiting time:  (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300



FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
 P2 , P3 , P1 .

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time:   (6 + 0 + 3)/3 = 3
 Much better than previous case.
 Convoy effect short process behind long process

P1P3P2

63 300



Shortest-Job-First (SJF) 
Scheduling
 Associate with each process the length of its next 

CPU burst.  Use these lengths to schedule the 
process with the shortest time.

 Two schemes: 
 nonpreemptive – once CPU given to the process it cannot 

be preempted until completes its CPU burst.
 Preemptive – if a new process arrives with CPU burst 

length less than remaining time of current executing 
process, preempt.  This scheme is know as the 
Shortest-Remaining-Time-First (SRTF).

 SJF is optimal – gives minimum average waiting 
time for a given set of processes.



Example of Non-Preemptive 
SJF
Process Arrival Time Burst Time

P1 0 7
 P2 2 4
 P3 4 1
 P4 5 4

 SJF (non-preemptive)

 Average waiting time = (0 + 6 + 3 + 7)/4 = 4

P1 P2

73 16

P4

8 12

P3

0



Example of Preemptive SJF(SRTF)

Process Arrival Time Burst Time
P1 0 7
 P2 2 4
 P3 4 1
 P4 5 4

 SJF (preemptive)

 Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16



Priority Scheduling

 A priority number (integer) is associated with each 
process

 The CPU is allocated to the process with the highest 
priority (smallest integer  highest priority).
 Preemptive
 nonpreemptive

 SJF is a priority scheduling where priority is the 
predicted next CPU burst time.

 Problem  Starvation – low priority processes may 
never execute.

 Solution  Aging – as time progresses increase the 
priority of the process.



Round Robin (RR)

 Each process gets a small unit of CPU time (time 
quantum), usually 10-100 milliseconds.  After this 
time has elapsed, the process is preempted and 
added to the end of the ready queue.

 If there are n processes in the ready queue and the 
time quantum is q, then each process gets 1/n of the 
CPU time in chunks of at most q time units at once.  
No process waits more than (n-1)q time units.

 Performance
 q large  FIFO
 q small  q must be large with respect to context switch, 

otherwise overhead is too high.



Example:  RR with Time Quantum 
= 20 Process Burst Time

P1 53

 P2  17

 P3 68

 P4  24
 The Gantt chart is: 

 Typically, higher average turnaround than SJF, 
but better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162



How a Smaller Time Quantum 
Increases Context Switches



Turnaround Time Varies With 
The Time Quantum



Multilevel Queue
 Ready queue is partitioned into separate queues:

foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm, 
foreground – RR
background – FCFS

 Scheduling must be done between the queues.
 Fixed priority scheduling; i.e., serve all from foreground 

then from background.  Possibility of starvation.
 Time slice – each queue gets a certain amount of CPU 

time which it can schedule amongst its processes; i.e.,
80% to foreground in RR

 20% to background in FCFS 



Multilevel Queue Scheduling



Multilevel Feedback Queue
 A process can move between the various 

queues; aging can be implemented this way.
 Multilevel-feedback-queue scheduler defined 

by the following parameters:
 number of queues
 scheduling algorithms for each queue
 method used to determine when to upgrade a 

process
 method used to determine when to demote a 

process
 method used to determine which queue a process 

will enter when that process needs service



Multilevel Feedback Queues



Example of Multilevel Feedback Queue

 Three queues: 
 Q0 – time quantum 8 milliseconds
 Q1 – time quantum 16 milliseconds
 Q2 – FCFS

 Scheduling
 A new job enters queue Q0 which is served FCFS. 

When it gains CPU, job receives 8 milliseconds.  If it 
does not finish in 8 milliseconds, job is moved to 
queue Q1.

 At Q1 job is again served FCFS and receives 16 
additional milliseconds.  If it still does not complete, it 
is preempted and moved to queue Q2.



Multiple-Processor 
Scheduling
 CPU scheduling more complex when multiple 

CPUs are available.
 Homogeneous processors within a 

multiprocessor.
 Load sharing 
 Asymmetric multiprocessing – only one 

processor accesses the system data 
structures, alleviating the need for data 
sharing.



Real-Time Scheduling

 Hard real-time systems – required to 
complete a critical task within a guaranteed 
amount of time.

 Soft real-time computing – requires that 
critical processes receive priority over less 
fortunate ones.



Dispatch Latency



Algorithm Evaluation

 Deterministic modeling – takes a particular 
predetermined workload and defines the 
performance of each algorithm  for that 
workload.

 Queuing models
 Implementation



Evaluation of CPU 
Schedulers by Simulation



              Case Study  
Unix Process Management



UNIX Process States





Zombies
    A process which has finished the execution but still has 

entry in the process table to report to its parent process is 
known as a zombie process. 

    A child process always first becomes a zombie before being 
removed from the process table.

    The parent process reads the exit status of the child 
process which reaps off the child process entry from the 
process table.

     zombie is not really a process as it has terminated but the 
system retains an entry in the process table for the non-
existing child process.

     A zombie is put to rest when the parent finally executes a 
wait().



A C program to demonstrate Zombie Process. 

// Child becomes Zombie as parent is sleeping 

// when child process exits. 

#include <stdlib.h> 

#include <sys/types.h> 

#include <unistd.h> 

int main() 

{ 

    // Fork returns process id 

    // in parent process 

    pid_t child_pid = fork(); 

  

    // Parent process  

    if (child_pid > 0) 

        sleep(50); 

  

    // Child process 

    else        

        exit(0); 

  

    return 0; 

} 



A C program to demonstrate Zombie Process. 

// Child becomes Zombie as parent is sleeping 

// when child process exits. 

#include <stdlib.h> 

#include <sys/types.h> 

#include <unistd.h> 

int main() 

{ 

    // Fork returns process id 

    // in parent process 

    pid_t child_pid = fork(); 

  

    // Parent process  

    if (child_pid > 0) 

        sleep(50); 

  

    // Child process 

    else        

        exit(0); 

  

    return 0; 

} 



Orphans

   A process whose parent process no more 
exists i.e. either finished or terminated 
without waiting for its child process to 
terminate is called an orphan process.

  When a parent terminates, orphans and 
zombies are adopted by the init process 
(process-id -1) of the system.



A C program to demonstrate Orphan Process. 
// Parent process finishes execution while the 
// child process is running. The child process 
// becomes orphan. 
#include<stdio.h> 
#include <sys/types.h> 
#include <unistd.h> 
  
int main() 
{ 
    // Create a child process       
    int pid = fork(); 
  
    if (pid > 0) 
        printf("in parent process"); 
  
    // Note that pid is 0 in child process 
    // and negative if fork() fails 
    else if (pid == 0) 
    { 
        sleep(30); 
        printf("in child process"); 
    } 
return 0; 
} 



A C program to demonstrate Orphan Process. 
// Parent process finishes execution while the 
// child process is running. The child process 
// becomes orphan. 
#include<stdio.h> 
#include <sys/types.h> 
#include <unistd.h> 
  
int main() 
{ 
    // Create a child process       
    int pid = fork(); 
  
    if (pid > 0) 
        printf("in parent process"); 
  
    // Note that pid is 0 in child process 
    // and negative if fork() fails 
    else if (pid == 0) 
    { 
        sleep(30); 
        printf("in child process"); 
    } 
return 0; 
} 



Daemons

    Daemons are server processes that run 
continuously. 

    Most of the time, they are initialized at system 
startup and then wait in the background until their 
service is required. 

    A typical example is the networking daemon, 
xinetd, which is started in almost every boot 
procedure. After the system is booted, the network 
daemon just sits and waits until a client program, 
such as an FTP client, needs to connect.
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