CPU Scheduling

Introduction

Basic Concepts

Scheduling Criteria
Scheduling Algorithms
Multiple-Processor Scheduling
Real-Time Scheduling
Algorithm Evaluation

Basic Concepts

Maximum CPU utilization obtained with
multiprogramming

CPU-I/O Burst Cycle — Process execution
consists of a cycle of CPU execution and 1/O
wailt.

CPU burst distribution

‘Alternating Sequence of CPU
And I/O Bursts

E
E

load store
add store

read from file = CPL burst

n,

il o IAC3 A burst
store increment

index CPU burst
write to Fille .

waill fog IA0 ’|> A burst
load store
add store
read from file - CPL burst

waill four 1570 - 1D burst

L]

CPU Scheduler

Selects from among the processes in memory that
are ready to execute, and allocates the CPU to one
of them.

CPU scheduling decisions may take place when a
Process.

1. Switches from running to waiting state.

2. Switches from running to ready state.

3. Switches from waiting to ready.

4. Terminates.

Scheduling under 1 and 4 is nonpreemptive.
All other scheduling is preemptive.

Dispatcher

Dispatcher module gives control of the CPU

to the process selected by the short-term

scheduler; this involves:

- switching context

< switching to user mode

< jumping to the proper location in the user program
to restart that program

Dispatch latency — time it takes for the

dispatcher to stop one process and start

another running.

Scheduling Criteria

CPU utilization — keep the CPU as busy as possible

Throughput — # of processes that complete their
execution per time unit

Turnaround time — amount of time to execute a
particular process

Waliting time — amount of time a process has been
waiting in the ready queue

Response time — amount of time it takes from when
a request was submitted until the first response is
produced, not output (for time-sharing environment)

Optimization Criteria

Max CPU utilization
Max throughput

Min turnaround time
Min waiting time
Min response time

First-Come, First-Served (FCFES)
Scheduling

Example: Process Burst Time
P, 24
P, 3
P; 3

Suppose that the processes arrive in the order: P; , P, , P;
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30

Waiting time for P, =0; P, =24, P;=27
Average waiting time: (0 +24 + 27)/I3 =17

FCFES Scheduling (Cont.)

Suppose that the processes arrive in the order
P2 y PS‘ | Pl .

The Gantt chart for the schedule Is:

P, P, P,

0 3 6 30

Waiting time for P, =6,P,=0.P;=3

Average waiting time: (6 +0 + 3)/3 =3

Much better than previous case.

Convoy effect short process behind long process

Shortest-Job-First (SJF)
Scheduling

Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time.

Two schemes:

< nonpreemptive — once CPU given to the process it cannot
be preempted until completes its CPU burst.

< Preemptive — if a new process arrives with CPU burst
length less than remaining time of current executing
process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

SJF is optimal — gives minimum average waiting
time for a given set of processes.

Example of Non-Preemptive

SIF
Process Arrival Time Burst Time
P, 0 7
P, 2 4
P, 4 1
P, 5 4
SJF (non-preemptive)
P, P, P, P,
—f——+—+ —+— —+—
0) 3 /7 8 12 16

Average waitingtime =(0+6+3+ 7)/4=4

Example of Preemptive SJF(SRTF)

Process Arrival Time Burst Time

P, O 7
P, 2 4
P; 4 1
P, 5 4
SJF (preemptive)
P, | P, [P, | P, P, P,
| | | 111
0 4 5 7 11 16

Average waitingtime=(9+1+0+2)/4=3

Priority Scheduling

A priority number (integer) is associated with each
process

The CPU is allocated to the process with the highest
priority (smallest integer = highest priority).

4 Preemptive

< nonpreemptive

SJF Is a priority scheduling where priority is the
predicted next CPU burst time.

Problem = Starvation — low priority processes may
never execute.

Solution = Aging — as time progresses increase the
priority of the process.

Round Robin (RR)

Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this
time has elapsed, the process is preempted and
added to the end of the ready queue.

If there are n processes in the ready queue and the
time quantum is g, then each process gets 1/n of the
CPU time in chunks of at most g time units at once.
No process waits more than (n-1)g time units.

Performance

2 g large = FIFO

< g small = g must be large with respect to context switch,
otherwise overhead is too high.

Example: RR with Time Quantum
= 20

Process Burst Time

P; 53
P, 17
Ps 68
P, 24

The Gantt chart Is:

0 20 37 57 77 97 117 121 134 154 162
PP, |P,|P, | P |P,|P | P |P,|P,

Typically, higher average turnaround than SJF,
but better response.

How a Smaller Time Quantum

Increases Context Switches

procass lime =10

G

0 1 2 3 4 5 B 7 8 8 10

quanium

12

context
awitches

0

Turnaround Time Varies With
The Time Quantum

process time
12.5
P, 6
12.0 P, 3
\ 2|7
.g 11.5 \ 4
2 1.0
3
e L
g 105
=
& 10.0
o
>
© 95
9.0

1 2 3 4 5 6 7

time quantum

Multilevel Queue

Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

Each queue has its own scheduling algorithm,
foreground — RR
background — FCFS

Scheduling must be done between the queues.

< Fixed priority scheduling; I.e., serve all from foreground
then from background. Possibility of starvation.

- Time slice — each queue gets a certain amount of CPU
time which it can schedule amongst its processes,; i.e.,
80% to foreground in RR

- 20% to background in FCFS

‘Multilevel Queue Scheduling

highest priority

[- system processes [T

interactive editing processes

E— E— 2
E— batch processes E— 2
— E—

student processes

lowest priority

Multilevel Feedback Queue

A process can move between the various
gueues; aging can be implemented this way.

Multilevel-feedback-queue scheduler defined
by the following parameters:

- number of queues

- scheduling algorithms for each queue

- method used to determine when to upgrade a
process

9 method used to determine when to demote a
process

- _method used to determine which queue a process
will enter when that process needs service

‘ Multilevel Feedback Queues

>
quantum = 8 F

>
quantum = 16 ’7

1111

>
FCFS ’

Example of Multilevel Feedback Queue

Three gueues:

J Qy — time quantum 8 milliseconds
J Q,; —time quantum 16 milliseconds
9 Q,—-FCFS

Scheduling

2 A new job enters queue Q, which is served FCFS.

When it gains CPU, job receives 8 milliseconds. Ifit
does not finish in 8 milliseconds, job iIs moved to

gueue Q,.

J At Q, job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, it
IS preempted and moved to queue Q.

Multiple-Processor
Scheduling

CPU scheduling more complex when multiple
CPUs are available.

Homogeneous processors within a
multiprocessor.

Load sharing

Asymmetric multiprocessing — only one
processor accesses the system data
structures, alleviating the need for data
sharing.

Real-Time Scheduling

Hard real-time systems — required to
complete a critical task within a guaranteed
amount of time.

Soft real-time computing — requires that
critical processes receive priority over less
fortunate ones.

‘ Dispatch Latency

avanlt

intarrup
proCessing

process made
available

M— conflicts —m

rasponse interval

M——— dispatch lalancy ———————m

time

respanse 1o evant

—— dispatch —im

o

raal-limea
BrOCESS

exacution
y—

Algorithm Evaluation

Deterministic modeling — takes a particular
oredetermined workload and defines the
performance of each algorithm for that
workload.

Queuing models
Implementation

Evaluation of CPU

simulation

| FCFS |

actual
Process
exacution

CPU 10
W 213
CPU 12
o 112
cPu 2

110 147
CPU73

simulation

SJF

frace tape

simulation

[RR(0=14)]

g

.

-

perfarmance
statistics
for FCFS

perfarmance
statistics
for SJF

parformancea
statistics
for RR(Q = 14)

Case Study
Unix Process Management

UNIX Process States

Tser Eunning
Eernel Eunning
Eeady to Eun, in Memory

Azleep tn Memory

Eeady to Eun, Swapped

sleeping, Swapped

Preempted

Created

Zombie

Executing in user mode.
Executing in kernel mode.
Eeady to run as soon as the kernel schedules it

Tnable to execute until an event occurs; process 12 10 main
memory (a blocked state).

Process 13 ready to run, but the swapper must swap the process into
main memory before the kernel can schedule it to execute.

The process 13 awaiting an event and hasz been swapped to
secondary storage (a blocked state).

Process 15 returning from kernel to user mode, but the kernel
preempts it and does a process switch to schedule another process.

Process 15 newly created and not yet ready to run.

Process no longer exists, but it leaves a record for its parent
process to collect.

Preempted

return

~ enough

fork

Created

not enough memory
(swapping system only)

to user A “o memory,
\\
Y
\\
User) S
; yreempt
Running I I e
swap out
return Feschedule Ready to Run PRead}-' to Run
T In Memory 4 swap in Swapped
process SWi
system call, /
interrupt Kernel 4 4
Running
- ¢ wakeup wakeup
interrupt,
interrupt return exit
o o Asleep in swap out > Sleep,
- Memory Swapped

Zombies

A process which has finished the execution but still has
entry in the process table to report to its parent process is
known as a zombie process.

A child process always first becomes a zombie before being
removed from the process table.

The parent process reads the exit status of the child
process which reaps off the child process entry from the
process table.

zombie is not really a process as it has terminated but the
system retains an entry in the process table for the non-
existing child process.

A zombie is put to rest when the parent finally executes a
wait().

A C program to demonstrate Zombie Process.

/I Child becomes Zombie as parent is sleeping
// when child process exits.
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
int main()
{
Il Fork returns process id
// in parent process
pid_t child_pid = fork();

/l Parent process
if (child_pid > 0)
sleep(50);

// Child process
else

exit(0);

return O;

A C program to demonstrate Zombie Process.

/I Child becomes Zombie as parent is sleeping
// when child process exits.

Activities Terminal « Tue 12:10 ®
#include <stdlib.h> TS
. C a(@localhost:~
#include <sys/types.h> ; .
#include <unistd. h> File Edit View Search Terminal Help
_ _ [chhaya@localhost ~]% ps -1
Int nwajn() F S uIiD PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
B S 1@ 2530 2421 @ 80 8 - 33049 wait pts/0 PB:00:008 bash
{ @ T 1leee 2697 2530 @ 86 @ - 408610 signal pts/®@ 00:00:00 top
[chhaya@localhost ~]% cc zombie.c
/l in parent process [chhaya@localhost ~]$./a.out
. . . in child process”Z
pld_t Chlld_pld = fOfk(); [2]+ Stoﬁped .Ja.out
[chhaya@localhost ~]% ps -1
UID PID PPID PRI NI ADDR 5Z WCHAN TTY TIME CMD
/l Parent process 1000 2530 2421 80 B8 - 33049 wait pts/0 00:00:00 bash

1006 2697 2530 80 8 - 40610 signal pts/0@ 00:00:00 top

5

c

6]

. - - 0
if (child_pid > 0) 1000 3137 2530 © 8O

2]

0

g

D= D@
TN WU

@ - 1086 signal pts/0 00:00:00 a.out
. leee 3138 3137 80 e - e - pts/0 00:00:00 a.out <defunct>
Sleep(50)’ 1868 3145 2538 a8 @ - 35818 - pts/@ 60:00:00 ps
[chhaya@localhost ~]% f
. .fa.out
/I Child process in parent process[chhaya@localhost ~]% ps -1
else F S uIiD PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
@5 1eee 2536 2421 06 86 0 - 33049 wait pts/0 00:00:00 bash
exﬁ(O); 8T 1leee 2697 2536 0 8 0 - 40610 signal pts/@ 00:00:00 top
@ R 1eee 3160 2530 @ 8O @ - 35810 - pts/e 00:00:00 ps
[chhaya@localhost ~]$% I
return O;

Orphans

®* A process whose parent process no more
exists I.e. either finished or terminated
without waiting for its child process to
terminate Is called an orphan process.

* When a parent terminates, orphans and
zombies are adopted by the init process
(process-id -1) of the system.

A C program to demonstrate Orphan Process.

I/l Parent process finishes execution while the
/ child process is running. The child process
I/l becomes orphan.

#include<stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main()

{

/I Create a child process
int pid = fork();

if (pid > 0)
printf("in parent process");

/I Note that pid is 0 in child process
/I and negative if fork() fails

else if (pid == 0)
{
sleep(30);
printf("in child process");
}
return O;

}

A C program to demonstrate Orphan Process.

Activities Terminal =

I/l Parent process finishes execution while the chhaya@lo
/ child process is running. The child process File Edit View Search Terminal Help
// becomes orphan. 2697 pts/o 00:00:00 top
)) 2971 pts/0 00:00:00 ps
#include<stdio.h> [chhaya@localhost ~]$ ps -1
#include <sys/types.h> FS UID PID PPID C PRI NI ADDR SZ WCHAM TTY TIME CMD
. . @S 1000 2530 2421 © 80 O - 33049 wait pts/e 00:00:00 bash
#include <unistd.h> @ T 1000 2697 2530 © 8@ O - 40610 signal pts/@ 00:00:00 top
@ R 1000 2978 2530 0 8@ @ - 35810 - pts/0 00:00:00 ps
. . [chhaya@localhost ~]$ cc orphan.c
int nqajn() [chhaya@localhost ~]$./a.out
{ in parent process[chhaya@localhost ~]$ ps -1
. FS UID PID PPID C PRI MI ADDR SZ WCHAM TTY TIME CMD
Il Create a child process @S 1000 2530 2421 © 80 O - 33049 wait pts/0 00:00:00 bash
int pid = fork(); @ T 1000 2697 2530 © 80 O - 40610 signal pts/® 00:00:00 top
1S 1000 3601 1544 © 88 © - 1086 hrtime pts/e 00:00:00 a.out
@ R 1000 3008 2530 0 88 @ - 35810 - pts/0 00:00:80 ps
if(Fﬂd > Q) [chhaya@localhost ~]$./a.out
. - . in parent process[chhaya@localhost ~]$% ps -1
printf("in parent process"); FS UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
@S 1000 2538 2421 © 80 O - 33049 wait pts/e P0:00:00 bash
- .) @ T 1000 2697 2530 © 80 O - 40610 signal pts/® P0:00:00 to
/' Note that pid is 0 in child process 1S 1000 3001 1544 © 80 6 - 1086 hr%ime Ets/@ 00:00:00 a.gut
/I and negative if fork() fails 1S 1000 3016 1544 © 8@ © - 1086 hrtime pts/e 00:00:00 a.out
e, @R 1000 3823 2530 0 88 O - 35810 - pts/0 00:00:00 ps
else if (pld == O) [chhaya@localhost ~]% in child process
{ [chhaya@localhost ~]14$ ps -1
FS UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
sleep(30); @S 1000 2530 2421 © 80 O - 33049 wait pts/® 00:00:00 bash
printf("in child process"); @ T 1000 2697 2530 O 80 O - 40610 signal pts/e 90:00:00 top
15 1000 3016 1544 © 80 © - 1086 hrtime pts/® P0:00:00 a.out
} @R 1000 3036 2530 0 88 @ - 35810 - pts/® PO:00:00 ps
return 0; [chhaya@localhost ~]% in child process
[chhaya@localhost ~]14% ps -1
} FS UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 5 1leee 2530 2421 © 8@ 8 - 33049 wait pts/0 00:00:00 bash
0 T 1loee 2697 2530 © 80 0 - 40610 signal pts/0 00:00:00 top
@ R 1000 3055 2530 © 8@ @ - 35810 - pts/0@ D0:00:00 ps

[chhaya@localhost ~1%

Daemons

Daemons are server processes that run
continuously.

Most of the time, they are Initialized at system
startup and then wait in the background until their
service Is required.

A typical example is the networking daemon,
xinetd, which is started in almost every boot
procedure. After the system is booted, the network
daemon just sits and waits until a client program,
such as an FTP client, needs to connect.

HelpDex www.ShaneCollinge.com

CHILD
PRoESS

I 11V €002 SUELS JUDLAdO

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

