
CPU Scheduling

Introduction

 Basic Concepts
 Scheduling Criteria
 Scheduling Algorithms
 Multiple-Processor Scheduling
 Real-Time Scheduling
 Algorithm Evaluation

Basic Concepts

 Maximum CPU utilization obtained with
multiprogramming

 CPU–I/O Burst Cycle – Process execution
consists of a cycle of CPU execution and I/O
wait.

 CPU burst distribution

Alternating Sequence of CPU
And I/O Bursts

CPU Scheduler

 Selects from among the processes in memory that
are ready to execute, and allocates the CPU to one
of them.

 CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.
3. Switches from waiting to ready.
4. Terminates.

 Scheduling under 1 and 4 is nonpreemptive.
 All other scheduling is preemptive.

Dispatcher

 Dispatcher module gives control of the CPU
to the process selected by the short-term
scheduler; this involves:
 switching context
 switching to user mode
 jumping to the proper location in the user program

to restart that program
 Dispatch latency – time it takes for the

dispatcher to stop one process and start
another running.

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible
 Throughput – # of processes that complete their

execution per time unit
 Turnaround time – amount of time to execute a

particular process
 Waiting time – amount of time a process has been

waiting in the ready queue
 Response time – amount of time it takes from when

a request was submitted until the first response is
produced, not output (for time-sharing environment)

Optimization Criteria

 Max CPU utilization
 Max throughput
 Min turnaround time
 Min waiting time
 Min response time

First-Come, First-Served (FCFS)
Scheduling
 Example: Process Burst Time

 P1 24
 P2 3

 P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
 P2 , P3 , P1 .

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time: (6 + 0 + 3)/3 = 3
 Much better than previous case.
 Convoy effect short process behind long process

P1P3P2

63 300

Shortest-Job-First (SJF)
Scheduling
 Associate with each process the length of its next

CPU burst. Use these lengths to schedule the
process with the shortest time.

 Two schemes:
 nonpreemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst.
 Preemptive – if a new process arrives with CPU burst

length less than remaining time of current executing
process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

 SJF is optimal – gives minimum average waiting
time for a given set of processes.

Example of Non-Preemptive
SJF
Process Arrival Time Burst Time

P1 0 7
 P2 2 4
 P3 4 1
 P4 5 4

 SJF (non-preemptive)

 Average waiting time = (0 + 6 + 3 + 7)/4 = 4

P1 P2

73 16

P4

8 12

P3

0

Example of Preemptive SJF(SRTF)

Process Arrival Time Burst Time
P1 0 7
 P2 2 4
 P3 4 1
 P4 5 4

 SJF (preemptive)

 Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Priority Scheduling

 A priority number (integer) is associated with each
process

 The CPU is allocated to the process with the highest
priority (smallest integer  highest priority).
 Preemptive
 nonpreemptive

 SJF is a priority scheduling where priority is the
predicted next CPU burst time.

 Problem  Starvation – low priority processes may
never execute.

 Solution  Aging – as time progresses increase the
priority of the process.

Round Robin (RR)

 Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this
time has elapsed, the process is preempted and
added to the end of the ready queue.

 If there are n processes in the ready queue and the
time quantum is q, then each process gets 1/n of the
CPU time in chunks of at most q time units at once.
No process waits more than (n-1)q time units.

 Performance
 q large  FIFO
 q small  q must be large with respect to context switch,

otherwise overhead is too high.

Example: RR with Time Quantum
= 20 Process Burst Time

P1 53

 P2 17

 P3 68

 P4 24
 The Gantt chart is:

 Typically, higher average turnaround than SJF,
but better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

How a Smaller Time Quantum
Increases Context Switches

Turnaround Time Varies With
The Time Quantum

Multilevel Queue
 Ready queue is partitioned into separate queues:

foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

 Scheduling must be done between the queues.
 Fixed priority scheduling; i.e., serve all from foreground

then from background. Possibility of starvation.
 Time slice – each queue gets a certain amount of CPU

time which it can schedule amongst its processes; i.e.,
80% to foreground in RR

 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue
 A process can move between the various

queues; aging can be implemented this way.
 Multilevel-feedback-queue scheduler defined

by the following parameters:
 number of queues
 scheduling algorithms for each queue
 method used to determine when to upgrade a

process
 method used to determine when to demote a

process
 method used to determine which queue a process

will enter when that process needs service

Multilevel Feedback Queues

Example of Multilevel Feedback Queue

 Three queues:
 Q0 – time quantum 8 milliseconds
 Q1 – time quantum 16 milliseconds
 Q2 – FCFS

 Scheduling
 A new job enters queue Q0 which is served FCFS.

When it gains CPU, job receives 8 milliseconds. If it
does not finish in 8 milliseconds, job is moved to
queue Q1.

 At Q1 job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, it
is preempted and moved to queue Q2.

Multiple-Processor
Scheduling
 CPU scheduling more complex when multiple

CPUs are available.
 Homogeneous processors within a

multiprocessor.
 Load sharing
 Asymmetric multiprocessing – only one

processor accesses the system data
structures, alleviating the need for data
sharing.

Real-Time Scheduling

 Hard real-time systems – required to
complete a critical task within a guaranteed
amount of time.

 Soft real-time computing – requires that
critical processes receive priority over less
fortunate ones.

Dispatch Latency

Algorithm Evaluation

 Deterministic modeling – takes a particular
predetermined workload and defines the
performance of each algorithm for that
workload.

 Queuing models
 Implementation

Evaluation of CPU
Schedulers by Simulation

 Case Study
Unix Process Management

UNIX Process States

Zombies
 A process which has finished the execution but still has

entry in the process table to report to its parent process is
known as a zombie process.

 A child process always first becomes a zombie before being
removed from the process table.

 The parent process reads the exit status of the child
process which reaps off the child process entry from the
process table.

 zombie is not really a process as it has terminated but the
system retains an entry in the process table for the non-
existing child process.

 A zombie is put to rest when the parent finally executes a
wait().

A C program to demonstrate Zombie Process.

// Child becomes Zombie as parent is sleeping

// when child process exits.

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

int main()

{

 // Fork returns process id

 // in parent process

 pid_t child_pid = fork();

 // Parent process

 if (child_pid > 0)

 sleep(50);

 // Child process

 else

 exit(0);

 return 0;

}

A C program to demonstrate Zombie Process.

// Child becomes Zombie as parent is sleeping

// when child process exits.

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

int main()

{

 // Fork returns process id

 // in parent process

 pid_t child_pid = fork();

 // Parent process

 if (child_pid > 0)

 sleep(50);

 // Child process

 else

 exit(0);

 return 0;

}

Orphans

 A process whose parent process no more
exists i.e. either finished or terminated
without waiting for its child process to
terminate is called an orphan process.

 When a parent terminates, orphans and
zombies are adopted by the init process
(process-id -1) of the system.

A C program to demonstrate Orphan Process.
// Parent process finishes execution while the
// child process is running. The child process
// becomes orphan.
#include<stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main()
{
 // Create a child process
 int pid = fork();

 if (pid > 0)
 printf("in parent process");

 // Note that pid is 0 in child process
 // and negative if fork() fails
 else if (pid == 0)
 {
 sleep(30);
 printf("in child process");
 }
return 0;
}

A C program to demonstrate Orphan Process.
// Parent process finishes execution while the
// child process is running. The child process
// becomes orphan.
#include<stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main()
{
 // Create a child process
 int pid = fork();

 if (pid > 0)
 printf("in parent process");

 // Note that pid is 0 in child process
 // and negative if fork() fails
 else if (pid == 0)
 {
 sleep(30);
 printf("in child process");
 }
return 0;
}

Daemons

 Daemons are server processes that run
continuously.

 Most of the time, they are initialized at system
startup and then wait in the background until their
service is required.

 A typical example is the networking daemon,
xinetd, which is started in almost every boot
procedure. After the system is booted, the network
daemon just sits and waits until a client program,
such as an FTP client, needs to connect.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

