

Unit 4: Memory Management
(Galvin – chap 8,9)

Contents

●Contiguous and non-contiguous memory,

●Swapping

●Paging, Segmentation

●Virtual Memory, demand Paging

●Page replacement algorithms- FIFO, LRU,

Optimal

●Allocation of frames and Trashing

●Program must be brought into memory and
placed within a process for it to be run

●Input queue or job queue – collection of
processes on the disk that are waiting to be
brought into memory to run the program"

● User programs go through several steps before
being run.

Background

Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses
can happen at three different stages
■ Compile time: If memory location known a priori, absolute
code can be generated; must recompile code if starting
location changes
■ Load time: Must generate relocatable code if memory
location is not known at compile time.
■ Execution time: Binding delayed until run time if the
process can be moved during its execution from one memory
segment to another. Need hardware support for address maps
(e.g.,base and limit registers).

Multistep Processing of a User Program

Logical vs. Physical Address Space

The concept of a logical address space that is bound to a
separate physical address space is central to proper
memory management"

● Logical address – generated by the CPU; also referred
to as virtual address

● Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-
time and

load-time address-binding schemes; logical (virtual) and
physical

addresses differ in execution-time address-binding scheme

Memory-Management Unit (MMU)

■ Hardware device that maps virtual to physical
address
■ In MMU scheme, the value in the relocation
register is added to every address generated by
a user process at the time it is sent to memory

■ The user program deals with logical
addresses; it never sees the real physical
addresses

Dynamic relocation using a relocation register

Swapping

A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for
continued execution
■ Backing store – fast disk large enough to
accommodate copies of all memory images for all users;
must provide direct access to these memory images
■ Roll out (swap-out), Roll in (Swap-in) – swapping
variant used for priority-based scheduling algorithms;
lower-priority process is swapped out so higher-priority
process can be loaded and executed
■ Major part of swap time is transfer time; total transfer
time is directly proportional to the amount of memory
swapped
■ Modified versions of swapping are found on many
systems (i.e., UNIX, Linux, and Windows)"

Schematic View of Swapping

Demand Paging

Bring a page into memory only when it is needed"

 1. Less I/O needed

 2. Less memory needed

 3. Faster response

 4. More users

■ Page is needed reference to it⇒

 1. invalid reference abort⇒

 2. not-in-memory bring to memory⇒

Lazy swapper – never swaps a page into memory unless page will be
needed Swapper that deals with pages is a pager

Transfer of a Paged Memory to Contiguous Disk
Space

Valid-Invalid Bit
● With each page table entry a valid–invalid bit is associated (1

 in-memory, 0 not-in-memory)"⇒ ⇒
● Initially valid–invalid but is set to 0 on all entries"
● Example of a page table snapshot:

● During address translation, if valid–invalid bit in page table
entry is 0 page fault⇒

●

1

1

:
:

0

1

Frame # Valid-invalid bit

page table

Page Table When Some Pages Are Not in Main
Memory

Steps in Handling a Page Fault

What happens if there is no free
frame?

● Page replacement – find some page in memory,
but not really in use, swap it out

● i. algorithm
● ii. performance – want an algorithm which will

result in minimum number of page faults
● Same page may be brought into memory several

times

Memory Allocations
Contiguous Allocation

● Main memory usually into two partitions:

1. Resident operating system, usually held in low memory with

 interrupt vector

2. User processes then held in high memory

● Each (Single-partition) allocation

● Relocation-register scheme used to protect user processes

 from each other, and from changing operating-system code

 and data

● Relocation register contains value of smallest physical address;

 limit register contains range of logical addresses – each logical

 address must be less than the limit register

A base and a limit register define a logical
address space

HW address protection with base and limit
registers

Contiguous Allocation (Cont.)

Multiple-partition allocation

● Hole – block of available memory; holes of various size are

 scattered throughout memory

● When a process arrives, it is allocated memory from a hole

 large enough to accommodate it

● Operating system maintains information about:

 a) allocated partitions b) free partitions (hole)

OS

Process 8

Process 5

Process 2

OS

Process 8

Process 2

OS

Process 8

Process 9

Process 2

OS

Process 8

Process 9

Process 10

Process 2

Dynamic Storage-Allocation Problem

● How to satisfy a request of size n from a list of free holes

■ First-fit: Allocate the first hole that is big enough

■ Best-fit: Allocate the smallest hole that is big enough;

must search entire list, unless ordered by size. Produces

the smallest leftover hole.

■ Worst-fit: Allocate the largest hole; must also search

entire list. Produces the largest leftover hole.

● First-fit and best-fit better than worst-fit in terms of speed and
storage utilization

● Example 1:

■ Given free memory partitions of 100K,
500K, 200K, 300K, and 600K (in order), how
would each of the

● First-fit, Best-fit, and Worst-fit algorithms place
processes of 212K, 417K, 112K, and 426K (in
order)?

■ Which algorithm makes the most efficient
use of memory?

●

● Example 2:

■ Given free memory partitions of 100K,
500K, 200K, 300K, and 600K (in order), how
would each of the

● First-fit, Best-fit, and Worst-fit algorithms place
processes of 317K, 226K, 423K, and 116K (in
order)?

■ Which algorithm makes the most efficient
use of memory?

● Fragmentation
■ Wastage of memory.

● External Fragmentation – Gaps between allocated contiguous
memory - total memory space exists to satisfy a request, but it is not
contiguous.

■ Internal Fragmentation – allocated memory may be slightly larger

than requested memory; this size difference is memory internal to a

partition, but not being used

■ Reduce external fragmentation by compaction.

● Shuffle memory contents to place all free memory together in

 one large block

● Compaction is possible only if relocation is dynamic, and is

 done at execution time

Define Garbage collection

Paging

● Logical address space of a process can be noncontiguous; process is
allocated physical memory whenever the later is available

■ Divide physical memory into fixed-sized blocks called frames

(size is power of 2, between 512 bytes and 8192 bytes)

■ Divide logical memory into blocks of same size called pages.

■ Keep track of all free frames

■ To run a program of size n pages, need to find n free frames and

load program

■ Set up a page table to translate logical to physical addresses

■ Internal fragmentation

● Address Translation Scheme

■ Address generated by CPU is divided into:

1. Page number (p) – used as an index into a page table

 which contains base address of each page in physical

 memory

2. Page offset (d) – combined with base address to define

 the physical memory address that is sent to the memory

 unit

Address Translation Architecture

Paging Example

Free Frames

● Implementation of Page Table

■ Page table is kept in main memory

■ Page-table base register (PTBR) points to the page table

■ Page-table length register (PRLR) indicates size of the
page

table

■ In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for the
data/instruction.

■ The two memory access problem can be solved by the use
of a special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBs)

Associative Memory

● Associative memory – parallel search

Page # Frame #

Paging Hardware With TLB

Memory Protection

■ Memory protection implemented by associating
protection bit with each frame

■ Valid-invalid bit attached to each entry in the page table:

● “valid” indicates that the associated page is in the
process’ logical address space, and is thus a legal page

● “invalid” indicates that the page is not in the process’

logical address space

Valid (v) or Invalid (i) Bit In A Page Table

Virtual Memory

■ Elusion to expand memory view onto

the secondary storage.

■ Moving pages – frames between

memory and HD

■ Demand paging

Shared Pages
● Shared code

– One copy of read-only (reentrant) code shared
among

processes (i.e., text editors, compilers, window
systems).

– Shared code must appear in same location in the
logical address space of all processes

● Private code and data
● Each process keeps a separate copy of the

code and data
● The pages for the private code and data can

appear anywhere in the logical address space

Segmentation

■ Memory-management scheme that
supports user view of memory "

■ A program is a collection of segments. A
segment is a logical unit such as:

main program,

procedure,

function,

method,

object,

local variables, global variables,

common block,

stack,

symbol table, arrays

User’s View of a Program

Logical View of Segmentation

1

4

2

3

1

2

4

3

User space Physical address space

Segmentation Architecture

■ Logical address consists of a two tuple:
<segment-number, offset>,

● ■ Segment table – maps two-dimensional physical
addresses;

● each table entry has:

● base – contains the starting physical address where the
segments reside in memory

● limit – specifies the length of the segment

■ Segment-table base register (STBR) points to the
segment table’s location in memory

■ Segment-table length register (STLR) indicates
number of segments used by a program;

segment number s is legal if s < STLR

Segmentation Architecture (Cont.)

■ Relocation.

 ● dynamic

 ● by segment table

■ Sharing.

 ● shared segments

 ● same segment number

■ Allocation.

 ● first fit/best fit

 ● external fragmentation

Difference between paging and segmentation

Segmentation Architecture (Cont.)

■ Protection. With each entry in segment table associate:

 ● validation bit = 0 illegal segment⇒

 ● read/write/execute privileges

■ Protection bits associated with segments; code sharing

occurs at segment level

■ Since segments vary in length, memory allocation is a

dynamic storage-allocation problem

■ A segmentation example is shown in the following diagram

Address Translation Architecture

Example of Segmentation

Sharing of Segments

Virtual memory

● separation of user logical memory from physical memory.

● Only part of the program needs to be in memory for execution

● Logical address space can therefore be much larger than
physical address space

● Allows address spaces to be shared by several processes

● Allows for more efficient process creation

● Virtual memory can be implemented via:

 1. Demand paging

 2. Demand segmentation

Virtual Memory That is Larger Than Physical Memory

Virtual-address Space

Page Faults
If there is a reference to a page, first reference to that page will
trap to operating system:

 page fault

Operating system looks at another table to decide:

Invalid reference ⇒ abort

Just not in memory

Get empty frame

Swap page into frame

Reset tables

Set validation bit = v

Restart the instruction that caused the page fault

Page Replacement

● Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement

● Use modify (dirty) bit to reduce overhead of page transfers –
only modified pages are written to disk

● Page replacement completes separation between logical
memory and physical memory – large virtual memory can be
provided on a smaller physical memory

Need For Page Replacement

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a page replacement
algorithm to select a victim frame

3. Bring the desired page into the (newly) free frame; update the
page and frame tables

4. Restart the process

Page Replacement

Page Replacement Algorithms

● We Want lowest page-fault rate

● Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

● In all our examples, the reference string is :

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

First-In-First-Out (FIFO) Algorithm

● Suffers from Belady’s Anomaly: more frames ⇒ more page
faults.

● Example:

FIFO Illustrating Belady’s Anomaly

Optimal Algorithm

Replace page that will not be used for longest
period of time

Least Recently Used (LRU) Algorithm

● Replace the page which is least recently used
in past.

●

Allocation of Frames
● Each process needs minimum number of pages

● Two major allocation schemes :

1. fixed allocation : Equal allocation – For example, if there are 100
frames and 5 processes, give each process 20 frames. Proportional
allocation – Allocate according to the size of process

2. priority allocation : Use a proportional allocation scheme using
priorities rather than size

● If process Pi generates a page fault,

 - select for replacement one of its frames

 - select for replacement a frame from a process with lower priority
number

Global vs. Local Allocation

Global replacement – process selects a
replacement frame from the set of all frames;
one process can take a frame from another

Local replacement – each process selects from
only its own set of allocated frames

Thrashing

If a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

 - low CPU utilization

 - operating system thinks that it needs to increase the degree of
multi-programming another process added to the system

Thrashing ≡ a process is busy swapping pages in and
out

Thrashing (Cont.)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

