
Introduction to the
File System

 Ch. 10 - Silberschatz, Galvin, Gagnes , "Operating System Concepts"

 Ch. 11 - William Stallings, "Operating System-Internals and Design Principles "

Contents
 File concepts
 File Attributes and operations
 File Types and sharing
 File Structure
 File system mounting and un-mounting
 Directory Overview and types
 Types of users
 Access modes/Permissions
 Case Study – Unix File Structure

Files
 Computers can store information on various storage

media, such as magnetic disks, magnetic tapes, and
optical disks.

 The operating system provides a uniform logical view of
information storage.

 The operating system abstracts from the physical
properties of its storage devices to define a logical
storage unit, the file.

 A file is a named collection of related information.
 Collections of files are grouped into directories (i.e.

Folders).
 A directory is itself a file

File

 It represent programs and data.
 Its a sequence of bits, bytes, lines, or records, the

meaning of which is defined by the file's creator and user.
 A file is named, for convenience, and is referred to by its

name.
 A file has a certain defined structure which depends on its

type.
– Text file is a sequence of characters,

– Source file is a sequence of subroutines and Functions,

– Object file is a sequence of bytes,

– Executable file is a series of code

File Concepts

 Contiguous logical address space
 Types:

– Data
• Numeric
• Character
• Binary

– Program

File Structure
 None - sequence of words, bytes
 Simple record structure

– Lines

– Fixed length

– Variable length

 Complex Structures
– Formatted document

– Relocatable load file

 Can simulate last two with first method by inserting
appropriate control characters.

 Who decides: Operating system / Program

File Attributes

 File specific information maintained by the operating
system.

 File attributes are meta-data associated with computer
files that define file system behavior.

 Each attribute can have one of two states: set and
cleared.

 Information about files are kept in the directory
structure, which is maintained on the disk.

File Attributes

 Name – only information kept in human-readable form.
 Type – needed for systems that support different types.
 Location – pointer to file location on device.
 Size – current file size.
 Protection – controls who can do reading, writing,

executing.
 Time, date, and user identification – data for

protection, security, and usage monitoring.
 Information about files are kept in the directory structure,

which is maintained on the disk.

File Operations

 Create
 Write
 Read
 reposition within file – file seek
 Delete
 Truncate
 open(Fi) – search the directory structure on disk for entry

Fi, and move the content of entry to memory.

 close (Fi) – move the content of entry Fi in memory to
directory structure on disk.

File Operations

 Open, Close
– Gain or relinquish access to a file

– OS returns a file handle – an internal data structure letting it
cache internal information needed for efficient file access

 Read, Write, Truncate
– Read: return a sequence of n bytes from file

– Write: replace n bytes in file, and/or append to end

– Truncate: throw away all but the first n bytes of file

 Seek, Tell
– Seek: reposition file pointer for subsequent reads and writes

– Tell: get current file pointer

 Create, Delete:
– Conjure up a new file; or blow away an existing one

File Types – name, extension

 Most operating systems recognize file types

– Filename extension

– I.e. resume.doc, server.java, readerthread.c
 Most support them

– Automatically open a type of file via a specific application (.doc)

– Only execute files of a given extension (.exe, .com)

– Run files of a given type via a scripting language (.bat)
 Can get more advanced

– If source code modified since executable compiled, if attempt made to
execute, recompile and then execute (TOPS-20)

– Mac OS encodes creating program’s name in file attributes

• Double clicking on file passes the file name to appropriate application

– Unix has magic number stored in file at first byte indicating file type

File Types – name, extension

File Type Extension Function

Executable exe, com, bin or none ready-to-run machine-language
program

Object obj, o complied, machine language, not
linked

Source code c, p, pas, 177, asm, a source code in various languages

Batch bat, sh commands to the command
interpreter

Text txt, doc textual data documents

Word processor wp, tex, rrf, etc. various word-processor formats

Library lib, a libraries of routines

Print or view ps, dvi, gif ASCII or binary file

Archive arc, zip, tar related files grouped into one file,
sometimes compressed.

Multimedia Mpeg, mov, rm mp3, avi Binary file containing audio or a/v
information

[Chhaya@localhost ~]$ cat a.c

#include<stdio.h>

int main()

{

 int a[10],b,c,i;

 b= 10;

 for(i=0;i<10;i++)

 {

 a[i]= b+i;;

 }

 b= c+b;

}

[Chhaya@localhost ~]$ xxd -b a.c
0000000: 00100011 01101001 01101110 01100011 01101100 01110101 #inclu
0000006: 01100100 01100101 00111100 01110011 01110100 01100100 de<std
000000c: 01101001 01101111 00101110 01101000 00111110 00001010 io.h>.
0000012: 01101001 01101110 01110100 00100000 01101101 01100001 int ma
0000018: 01101001 01101110 00101000 00101001 00001010 01111011 in().{
000001e: 00001010 00100000 01101001 01101110 01110100 00100000 . int
0000024: 01100001 01011011 00110001 00110000 01011101 00101100 a[10],
000002a: 01100010 00101100 01100011 00101100 01101001 00111011 b,c,i;
0000030: 00001010 00100000 01100010 00111101 00100000 00110001 . b= 1
0000036: 00110000 00111011 00001010 00100000 00001010 00100000 0;. .
000003c: 01100110 01101111 01110010 00101000 01101001 00111101 for(i=
0000042: 00110000 00111011 01101001 00111100 00110001 00110000 0;i<10
0000048: 00111011 01101001 00101011 00101011 00101001 00001010 ;i++).
000004e: 00100000 01111011 00001010 00100000 00100000 00100000 {.
0000054: 01100001 01011011 01101001 01011101 00111101 00100000 a[i]=
000005a: 01100010 00101011 01101001 00111011 00111011 00001010 b+i;;.
0000060: 00100000 00100000 00100000 00001010 00100000 01111101 . }
0000066: 00001010 00100000 01100010 00111101 00100000 01100011 . b= c
000006c: 00101011 01100010 00111011 00100000 00001010 01111101 +b; .}
0000072: 00001010 00100000 00100000 00100000 00001010 . .
[Chhaya@localhost ~]$

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

