
Directory



Directory Overview

 Directory similar to symbol table translating file names to 
their directory entries

– Can be organized in many ways

 Organization needs to support operations including:
– Search for a file or multiple files

– Create a file

– Delete a file

– List a directory

– Rename a file

– Traverse the file system



Directory Organization

 Should have the features:
– Efficiency – locating a file quickly

– Naming – convenient to users

 Two users can have same name for different 
files

 The same file can have several different names

– Grouping – logical grouping of files by properties, 
(e.g., all Java programs, all games, …) or 
arbitrarily



Directory – A Special Kind of File

 A tool for users & applications to organize and find files
– User-friendly names

– Names that are meaningful over long periods of 
time

 The data structure for OS to locate files (i.e., containers) 
on disk



Directory structures

 Single level
– One directory per system, one entry pointing to each file

– Small, single-user or single-use systems

• PDA, cell phone, etc.
 Two-level

– Single “master” directory per system

– Each entry points to one single-level directory per user

– Uncommon in modern operating systems

 Hierarchical/tree
– Any directory entry may point to

• Individual file

• Another directory

– Common in most modern operating systems



Directory Considerations

 Efficiency – locating a file quickly.
 Naming – convenient to users.

– Separate users can use same name for separate 
files.

– The same file can have different names for 
different users.

– Names need only be unique within a directory

 Grouping – logical grouping of files by properties
• e.g., all Java programs, all games, …



Directories

 Directories/folders keep track of files
 Is a symbol table that translates file names to directory entries
 Usually are themselves files
 How to structure the directory to optimize all of the following:

– Search a file

– Create a file

– Delete a file

– List directory

– Rename a file

– Traversing the FS
F 1 F 2

F 3
F 4

F n

Directory

Files



Single-level Directory

 One directory for all files in the volume
– Called root directory
Used in early PCs, even the first supercomputer CDC 

6600

 Pros: simplicity, ability to quickly locate files
 Cons: Naming problem, Grouping problem



Two-level directory

 Each user has a separate directory



Two-level directory

 Pros:
– Solves name collision.
– Can have the same file name for different user.
– Efficient searching.
– Isolation

 Cons: 
– No grouping capability
– May not allow a user to access other users’ files 



Tree-structured Directory

 Directory is now a tree of arbitrary height



Tree-structured Directory

● Directory contains files and sub-directories

● A bit in directory entry differentiates files from subdirectories

● This ensures:

● Efficient searching

● Grouping Capability

● Current directory (working directory)

● cd /spell/mail/prog
● type list



Tree-Structured Directories (Cont.)

● Users can create directories within their directory

● Directory can then contain files or other directories

● Directory can be another file with defined formatting and 
attribute indicating its type

● Separate system calls to manage directory actions



Path: Directories & File

 Path: A unique name of a file or directory in a filesystem
– E.g., /usr/bin/top

 Absolute path or full path: The path that points to the same 
location on one file system regardless of working directory 
or combined path. 

– It is usually written in reference to a root directory.

– Ex: /home/users/c/computerhope/public_html/cgi-
bin 

 Relative path: The path related to the current working 
directory.

– Ex: /public_html/cgi-bin



● Have shared sub-directories and files

Acyclic-Graph Directories



Acyclic-Graph Directories (Cont.)

 Adds ability to directly share directories between users.
 But can now have multiple absolute paths to the same file.
 Two different names (aliasing)

– If dict deletes list: dangling pointer
 Solutions:

– Back pointers, so we can delete all pointers

• Variable size records a problem

– Entry-hold-count solution



Acyclic-Graph Directories (Cont.)

 New directory entry type
– Link – another name (pointer) to an existing file

• Indirect pointer
• Delete link separate from the files
• Hard and symbolic

 Resolve the link – follow pointer to locate the file



General Graph Directory



General Graph Directory (Cont.)

 How do we guarantee no cycles?
– Allow only links to file not subdirectories

– Garbage collection

– Every time a new link is added use a cycle 
detection algorithm to determine whether it is OK

– Or just bypass links during directory traversal


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 18
	Slide 19

