
File System Mounting

● A file system must be mounted before it can be accessed
– Privileged operation
– First check for valid file system on volume
– Kernel data structure to track mount points

● Some systems have separate designation for mount point
(i.e. “c:”)

● Others integrate mounted file systems into existing directory
naming system
– In separate space (i.e. /volumes) or within current name

space

File System Mounting

● A unmounted file system on /device/dsk (i.e., Fig. 11-11(b)) is
mounted at a mount point

What if the mount point already has contents?
● Configuration file or data structure to track default mounts

– Used at reboot or to reset mounts

● What if files are open on a device that is being unmounted?

(a) Existing (b) Unmounted Partition

Mount Point

File System Mounting

● Mount allows two FSes to be merged into one
– For example you insert your floppy into the root FS

mount(“/dev/fd0”, “/mnt”, 0)

Remote file system mounting

● Same idea, but file system is actually on some other
machine

● Implementation uses remote procedure call
– Package up the user’s file system operation
– Send it to the remote machine where it gets executed like a

local request
– Send back the answer

● Very common in modern systems

File Sharing

● Sharing of files on multi-user systems is desirable

● Sharing may be done through a protection scheme

● On distributed systems, files may be shared across a
network

● Network File System (NFS) is a common distributed
file-sharing method

Path Names

● To access a file, the user should either:
– Go to the directory where file resides, or
– Specify the path where the file is

● Path names are either absolute or relative
– Absolute: path of file from the root directory
– Relative: path from the current working directory

● Most OSes have two special entries in each directory:
– “.” for current directory and “..” for parent

Directory Organization – Hierarchical

● Most systems support idea of current (working) directory
– Absolute names – fully qualified from root of file system

• /usr/group/foo.c, ~/kernelSrc/config.h
– Relative names – specified with respect to working directory

• foo.c, bar/bar2.h
– A special name – the working directory itself

● “.”
● Modified Hierarchical – Acyclic Graph (no loops) and General

Graph
– Allow directories and files to have multiple names
– Links are file names (directory entries) that point to existing (source)

files

Links

● Symbolic (soft) links: uni-directional relationship between a file
name and the file
– Directory entry contains text describing absolute or relative path name

of original file
– If the source file is deleted, the link exists but pointer is invalid

● Hard links: bi-directional relationship between file names and
file
– A hard link is directory entry that points to a source file’s metadata
– Metadata maintains reference count of the number of hard links

pointing to it – link reference count
– Link reference count is decremented when a hard link is deleted
– File data is deleted and space freed when the link reference count goes

to zero

Unix-Linux Hard Links

● File may have more than one name or path

• rm, mv —directory operations, not file operations!
– The real name of a Unix file is internal name of its

metadata
● Known only to OS!

● Hard links are not used very often in modern Unix
practice
– Exception: Linked copies of large directory trees!
– (Usually) safe to regard last element of path as name of file

Directory Operations

● Create:
● Make a new directory

● Add, Delete entry:
● Invoked by file create & destroy, directory create & destroy

● Find, List:
● Search or enumerate directory entries

● Rename:
● Change name of an entry without changing anything else about it

● Link, Unlink:
● Add or remove entry pointing to another entry elsewhere
● Introduces possibility of loops in directory graph

● Destroy:
● Removes directory; must be empty

Directories (continued)

● Orphan: a file not named in any directory
● Cannot be opened by any application (or even OS)
● May not even have name!

● Tools
● FSCK – check & repair file system, find orphans
● Delete_on_close attribute (in metadata)

● Special directory entry: “..”  parent in hierarchy
● Essential for maintaining integrity of directory system
● Useful for relative naming

Directories — Summary

● Fundamental mechanism for interpreting file names in an
operating system

● Widely used by system, applications, and users

File Access Rights

● Types of Users:
– Owner/user (u)
– Group (g)
– All/Other (o)

● Types of Permissions:
– Read (r)
– Write (w)
– Execute (x)

● Types of Files
– Directories
– Other files

Directory Permissions

read = list files in the directory

write = add new files to the directory

execute = access files in the directory

Determining File Access Rights

 Permission Values

	Slide 1
	Slide 2
	(a) Existing (b) Unmounted Partition
	Mount Point
	File System Mounting
	Remote file system mounting
	File Sharing
	Path Names
	Directory Organization – Hierarchical
	Links
	Unix-Linux Hard Links
	Directory Operations
	Directories (continued)
	Directories — Summary
	Slide 15
	Slide 16
	Slide 17
	Slide 18

