
Unix File system

● The file system is a hierarchical system of
organizing files and directories.

● The top level in the hierarchy is called the
"root" and holds all files and directories.

● The name of the root directory is /

/

bin etc users tmp usr

hollid2 scully bin etc

netprog unix X ls who

The File System

Directories

● A directory is a special kind of file -

● Unix uses a directory to hold information about
other files.

● Directory acts as a container that holds other
files (or directories).

File System

● A file system is consists of a sequence of logical
blocks (512/1024 byte etc.)

● A file system has the following structure:

Boot Block Super
Block

Inode List Data
Blocks

File System: Inode List

● Inodes are used to access disk files.
● Inodes maps the disk files
● For each file there is an inode entry in the inode list block
● Inode list also keeps track of directory structure
● consists of

– file owner identifier
– file type
– file access permissions
– file access times
– number of links to the file
– table of contents for the disk address of data in a file
– file size

UNIX File Types

● Regular
– Contains arbitrary data stored in zero or more data blocks
– Treated as stream of bytes by the system

● Directory
– Contains list of file names along with pointers to associated

nodes (index nodes, or inodes)
– Organized in hierarchies

● Special
– Contains no data, but serves as a mapping to physical devices
– Each I/O device is associated with a special file

● Named pipe
– Implement inter-process communication facility in file system

name space
● Link

– Provides name aliasing mechanism for files
● Symbolic link

– Data file containing the name of file it is linked to

6

Not in all file
system

File Types

1.Regular files

2.Directories

3.Character device files

4.Block device files

5.UNIX domain sockets

6.Named pipes (FIFOs)

7.Symbolic links
ls -ld command gives type of file

O/p: drwx------. 46 admin admin 4096 Jul 21 11:03 .

File Type Symbol used

Regular file -

Directory d

Character device file c

Block device file b

Local domain socket s

Named pipe p

Symbolic link l

File Types

1. Regular Files

● A regular file is a big bag of bytes (so called bag o’
bytes)

● Unix imposes no structure on its contents.

● Ex: Text files , data files, executable programs and
shared libraries.
– binary

– GIF, JPEG, Executable etc.

– text

– scripts, program source code, documentation
● Supports sequential and random access

2. Directory

● Directory contains named references of other files.
Commands: mkdir and rmdir

● Can contain ANY kind of files.
– what is “.” and “..”??

(. means directory itself and .. means its parent directory)
– File’s name is actually stored in its parent directory not

with the file itself.
– References to files are called Links.
– File system allow more than one directory entry point to a

particular file.
– Attributes of files like ownership and permissions are

shared among all links.
– What is hard links and soft links?

3. Device File

● Allows programs to communicate with hardware.
● The module for a particular device called device

drivers to manage the device.
● Device drivers are like regular files.
● Kernel modules handles device management.

● Character Device
● Accepts a stream of characters, without

regard to any block structure.
● It is not addressable, therefore no seek

operation

4. Block Device

● Information stored in fixed-sized block
● It is addressable, therefore seek operation is possible.
● Device files are characterized by two numbers major and

minor device numbers.
● Major device no. tells the kernel which driver the file refers

to.
● Minor device no. tells the driver which physical unit to

address.

Types of Files (cont.)

5. UNIX Domain Sockets (BSD)
– Sockets are connections between processes that

allow them to communicate.
– Sockets that are local to a particular host and are

referenced through a file system object rather than a
network port.

– Used in X windows, syslog etc.

6. Named Pipe /FIFO files
– Like sockets it allow communication between two

unrelated processes running on the same host.

Types of Files (cont.)

7. Symbolic links
● symbolic links points to a file by its name (using its

pathname).
● Hard links

➔ Linking files by reference
➔ System maintains a count of the number of links
➔ Does not work across file systems.

● Soft links
➔ Linking files by name
➔ No counter is maintained
➔ Work across file system

Directory Structure and File Layout

15

Organization of File Tree

● The UNIX file system has never been very
well organized.”

– incompatible naming convention
– Different types of files are scattered in namespace.

e.g. long file naming

– Due to different conventions, it is difficult to upgrade
the Operating system.

/ The root directory

/bin or /sbin Commands for basic system operation

/dev Device entries

/etc Critical startup and configuration
files.

/lib Library for the C compiler

/tmp Temporary files

/var/adm or /var/log Accounting file, log files

/proc Information of all running process

17

Organizing of The File System (cont.)

Some more files …

● /sys : kernel building work area, configuration files.

● /proc : images of all running processes

● /usr/bin : executable files

● /usr/man : online manual pages

● /usr/include: header files for C programs

● /usr/share/man : online manual pages

● /var/tmp: more temporary spaces

** /usr and /var directories are very important **

File Organization

● In /usr, most of the standard programs are kept along with
many online manual pages and most of the libraries.

● While /var, maintains directories, log files,accounting
information and various other entities that are needed on
each host.

● Eg: /usr/bin, /usr/tmp,/usr/lib,/usr/share etc..

● Eg: /var/tmp, /var/log,/var/adm etc..

File Attributes

● Every file has a set of 9 permission bits that control
who can read, write and execute the contents of
the file.

● All users must login with a username and password
● Users identified by username and group

memberships
– Access to resources depends on username and

group membership
– To access resources it must have permissions

File Permissions

● Files and directories have
✔ Owner
✔ Group

● Linux determines who can access file or
directory based on:

✔ Who is owner
✔ Which group is assigned to object/file

● File permissions define access granted to
file or directory

File Permissions (continued)
● Access mode/access permissions/access control
● Permissions

✔ Read permission (r) (4)
✔ Write permission (w) (2)
✔ Execute permission (x) (1)

● Permissions can be assigned by:
✔ User permissions
✔ Group permissions
✔ Other permissions

** use ls -l command to see long list of the file.**
Output is like :

-rw-rw-r-- 1 admin admin 1545 Jun 26 10:25 ass1.sh
-rw-rw-r-- 1 admin admin 1542 Jun 26 10:19 ass1.sh~
-rw-rw-r-- 1 admin admin 628 Oct 17 2013 b06.sh
-rw-rw-r-- 1 admin admin 731 Oct 17 2013 B06.sh
drwxrwxr-x 4 admin admin 4096 Mar 7 15:10 color-animation

File Permissions (continued)

File Permissions (continued)

● On a regular file, the “r” bit allows the file to be opened and
read.

● “w” bit allows the file contents to be modified or truncated.

● Delete or rename is now allowed directly as the file is controlled
by the permissions on its parent directory.

● “x” bit allows the file to be executed.

● Executable files are of 2 types :

1. Binary file: which the CPU runs directly.

2. Script file: which must be interpreted by shell or some
other program like compilers.

Permissions

Check for the permissions

777 000 111 121 242

222 444 412 421 124

254 564 251 256 177

Changing Permissions

Changing Ownership

● chown command

– Change user and group assigned to file or directory
– Can only use when logged in as root

Example: chown jtaylorManagers report.doc

● To change a file’s group, you must either be the owner
of the file and belong to the group you’re changing to or
be the superuser.

● chgrp command

– Change group assigned to file or directory
– Example: chgrp managers report.doc

Changing Ownership

● chown (change owner) command: change
ownership of a file or directory
– Two arguments:
1.New owner
2.File to change

– Can use –R option for contents of directory
● chgrp (change group) command: change group

owner of a file or directory
– Same arguments and options as for chown

command
– Two arguments:

1.New owner
2.File to change

Changing Ownership

chown can change both the owner and group of a
file at once with the syntax

chown user:group file ...

For example,

chown -R matt : staff ~matt/restore

Changing Ownership

● Primary group: user’s default group

● During file creation, file’s owner and group owner set to
user’s username and primary group same for directory
creation.

● whoami command: view current user name

● groups command: view group memberships and
primary group

● touch command: create an empty file

Changing File Permissions

●chmod (change mode) command
● Change file permissions
● Regular users can alter permissions assigned to

any file or directory that you own.
● Only the owner of the file and the superuser can

change its permissions.
● The first argument to chmod is a specification of

the permissions to be assigned,and the second
and subsequent arguments are names of files on
which permissions should be changed.

● Examples:1. chmod o+w report.doc
 2. chmod 711 myprog

● User (u), group (g) and others (o)

Changing File Permissions

● For the Alphabetical or mnemonic syntax, you combine a
set of targets (u, g, or o for user, group, other) with an
operator (+, -, = to add, remove, or set) and a set of
permissions.

● Examples: u+w

 O-x
● With the -R option, chmod recursively updates the file

permissions within a directory.

● Example :$ chmod -R g+w mydir

Default File Permissions

● rw-rw-rw-
● umask command

– Defines mask to stop certain permissions
from being granted by default when file is
created

– Executed automatically when you log in to
Linux

– Uses same three-digit permission codes as
chmod command

umask: assign default permissions
● Every process has its own umask attribute.

● The umask is specified as a three-digit octal value that
represents the permissions.

● When a file is created, its permissions are set to whatever
the creating program requests minus whatever the
umask forbids.

For example, umask 027

It allows all permissions for the owner but forbids write
permission to the group and allows no permissions for
anyone else.

Setting Special Permissions

●Special permissions require execute access.
●Mask the execute permission when displayed by
the ls – l command
●May be set even if file or directory does not
have execute permission

● Indicating letter in the mode will be
capitalized.

●Add special permissions via chmod command
● Add an extra digit at front of permissions
argument

Mounting and Un-mounting of file system

● Unix has a tree file system.

● The file system once created is logically a
separate entity and has a separate tree structure
and root directory.

● At the time of booting, these file system unites to
become a single file system.

● The root file system is the main file system and
root directory is the directory for it.

Mounting and Un-mounting of file system

● With mounting, the user sees a single file system and
the file that seems moved from one directory to other.

● To mount means to attach a file systems to the root file
system.

● First an empty directory is created in the main file
system.

● Unix has mount and umount commands which are
used for device opening and closing for block devices.

Eg: mount /dev/usr /home/ccoew/pendrive1

Mounting

● Mounting: making a device accessible to users via the
logical directory tree.

● Mount point: directory to which a device is attached

– The mounted device temporarily covers up the
contents of the mount point

– Any existing directory can be a mount point

● In order to prevent making files inaccessible, create
empty directories used specifically for mounting devices

Figure 1:The directory structure prior to mounting

Mounting (continued)

Mounting (continued)

Figure 2: The directory structure after mounting any external device

Mounting (continued)

● Root filesystem: when Linux filesystem is first
turned on, a filesystem on the hard drive is mounted to
the “/” directory
– Contains most OS files

● mount command: used to mount devices to
mount point directories

– When used with no options or arguments, lists
currently mounted filesystems

● umount command: used to unmount devices
from mount point directories

umount command

● It is used to remove file systems.

Eg: umount /dev/usr /pendrive1

● Unmounting of the file system is not possible if a
file is opened or not placed above it.

● Basic file systems are automatically mounted
during start-up or booting and unmounted when
the system is shut down.

Unmounting (continued)

Figure 3: The directory structure after unmounting any external device

	Slide 1
	Slide 2
	Slide 3
	File System
	File System: Inode List
	UNIX File Types
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Directory Structure and File Layout
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

