I/O Management and Disk Scheduling

Categories of I/O Devices

- Difficult area of OS design
 - Difficult to develop a consistent solution due to a wide variety of devices and applications
- Three Categories:
 - Human readable
 - Machine readable
 - Communications

Human readable

- Devices used to communicate with the user
- Printers and terminals
 - Video display
 - -Keyboard
 - -Mouse etc

Machine readable

- Used to communicate with electronic equipment
 - Disk drives
 - –USB keys
 - -Sensors
 - Controllers
 - Actuators

Communication

- Used to communicate with remote devices
 - Digital line drivers
 - Modems

Differences in I/O Devices

- Devices differ in a number of areas
 - –Data Rate
 - -Application
 - Complexity of Control
 - –Unit of Transfer
 - -Data Representation
 - **–**Error Conditions

Data Rate

May be massive difference between the data transfer rates of devices

Figure 11.1 Typical I/O Device Data Rates

Application

The use to which a device is put has an influence on the software and policies in the O.S. and supporting utilities. ^I Disk used to store files requires file management software

- Disk used to store virtual memory pages needs special hardware and software to support it
- Terminal used by system administrator may have a higher priority

Complexity of control

- A printer requires a relatively simple control interface.
- A disk is much more complex.
- This complexity is filtered to some extent by the complexity of the I/O module that controls the device.

Unit of transfer

- Data may be transferred as

 –a stream of bytes or characters (e.g., terminal I/O)
 - or in larger blocks (e.g., disk I/O).

Data representation

 Different data encoding schemes are used by different devices, –including differences in character code and parity conventions.

Error Conditions

- The nature of errors differ widely from one device to another.
- Aspects include:
 - the way in which they are reported,
 - -their consequences,
 - -the available range of responses

Organization of the I/O Function

Techniques for performing I/O

- Programmed I/O
- Interrupt-driven I/O
- Direct memory access (DMA)

	No Interrupts	Use of Interrupts
I/O-to-memory transfer through processor	Programmed I/O	Interrupt-driven I/O
Direct I/O-to-memory transfer		Direct memory access (DMA)

Programmed I/O

- The processor issues an I/O command on behalf of a process to an I/O module;
- that process then busy-waits for the operation to be complete before proceeding.

Interrupt-driven I/O

- The processor issues an I/O command on behalf of a process.
 - I if non-blocking processor continues to execute instructions from the process that issued the I/O command
 - I if blocking the next instruction the processor executes is from the OS, which will put the current process in a blocked state and schedule another process

Direct Memory Access (DMA)

A DMA module controls the exchange of data between main memory and an I/O module.

Evolution of the I/O Function

Processor directly controls a peripheral device
 Controller or I/O module is added

- Processor uses programmed I/O without interrupts
- Processor does not need to handle details of external devices

3.Controller or I/O module with interrupts

Efficiency improves as processor does not spendtime waiting for an I/O operation to be performed

Evolution of the I/O Function

- 4. Direct Memory Access
 - Blocks of data are moved into memory without involving the processor
 - Processor involved at beginning and end only
- I/O module is enhanced as a separate processor CPU directs the I/O processor to execute an I/O program in main memory.
- 6. I/O processor
 - -I/O module has its own local memory
 - Commonly used to control communications with interactive terminals