

Process Synchronization
Critical Section Problem

Multiple Processes

● Central to the design of modern Operating
Systems is managing multiple processes
– Multiprogramming

– Multiprocessing

– Distributed Processing

● Big Issue is Concurrency
– Managing the interaction of all of these processes

Concurrency

● Concurrency arises in:

– Multiple applications
● Sharing time

– Structured applications
● Extension of modular design

– Operating system structure
● OS themselves implemented as a set of

processes or threads

Concurrency

● Concurrent access to shared data may result in data
inconsistency.

● Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes.

Key Terms

The Critical-Section Problem

 n processes all competing to use some shared data
 Each process has a code segment, called critical section, in

which the shared data is accessed.
 Problem – ensure that when one process is executing in its

critical section, no other process is allowed to execute in its
critical section.

 Structure of process Pi

repeat

entry section
 critical section
exit section
reminder section

until false;

Solution to Critical-Section Problem

 Mutual Exclusion. If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections.

 Progress. If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely.

 Bounded Waiting. A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section
and before that request is granted.

 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n processes.

Initial Attempts to Solve Problem

 Only 2 processes, P0 and P1

 General structure of process Pi (other process Pj)
repeat

entry section
critical section

exit section

reminder section
until false;

 Processes may share some common variables to
synchronize their actions.

Algorithm 1

 Shared variables:
 var turn: (0..1);

initially turn = 0
 turn - i  Pi can enter its critical section

 Process Pi

repeat

while turn  i do no-op;

critical section

turn := j;

reminder section

until false;
 Satisfies mutual exclusion, but not progress

Algorithm 2

 Shared variables
 var flag: array [0..1] of boolean;

initially flag [0] = flag [1] = false.
 flag [i] = true  Pi ready to enter its critical section

 Process Pi

repeat

flag[i] := true;
while flag[j] do no-op;

critical section

flag [i] := false;

remainder section

until false;
 Satisfies mutual exclusion, but not progress requirement.

Algorithm 3

 Combined shared variables of algorithms 1 and 2.
 Process Pi

repeat

flag [i] := true;
turn := j;
while (flag [j] and turn = j) do no-op;

critical section

flag [i] := false;

remainder section

until false;
 Meets all three requirements; solves the critical-section problem

for two processes.

Race Condition

● A race condition occurs when

– Multiple processes or threads read and write data
items

– They do so in a way where the final result depends
on the order of execution of the processes.

● The output depends on who finishes the race last.

● The race condition are prevented by requiring that
critical section be protected by locks.

● That is, a process must acquire a lock before entering a
critical section; it releases the lock when it exits the
critical section.

Solution to the critical-section problem
using locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

Requirements for Mutual Exclusion

● Only one process at a time is allowed in the critical
section for a resource

● A process that halts in its noncritical section must do
so without interfering with other processes

● No deadlock or starvation

Semaphore

● The semaphore is used to protect any resource such as
global shared memory that needs to be accessed and
updated by many processes simultaneously.

● Semaphore acts as a guard or lock on the resource.

● Whenever a process needs to access the resource, it first
needs to take permission from the semaphore.

● The semaphore is implemented as an integer variable,
say as S, and can be initialized with any positive integer
values.

Semaphore

● The semaphore is accessed by only two indivisible
operations known as wait() and signal() operations,
denoted by P and V, respectively.

● Whenever a process tries to enter the critical section, it
needs to perform wait operation.

Semaphore

● Operating systems often distinguish between counting and
binary semaphores.

● The value of a counting semaphore can range over an
unrestricted domain.

● The value of a binary semaphore can range only
between 0 and 1.

● On some systems, binary semaphores are known as
mutex locks, as they are locks that provide mutual
exclusion.

Semaphore

● We can use binary semaphores to deal with the critical-
section problem for multiple processes.

● Then processes share a semaphore, mutex, initialized to
1.

● Each process is organized as below.

Semaphore

● Counting semaphores can be used to control access to a given
resource consisting of a finite number of instances.

● The semaphore is initialized to the number of resources
available.

● Each process that wishes to use a resource performs a wait()
operation on the semaphore (thereby decrementing the count).

● When a process releases a resource, it performs a signal()
operation (incrementing the count).

● When the count for the semaphore goes to 0, all resources are
being used.

● After that, processes that wish to use a resource will block until
the count becomes greater than 0.

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes.

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

  

signal(S); signal(Q);

signal(Q) signal(S);
 Starvation – indefinite blocking. A process may never be

removed from the semaphore queue in which it is suspended.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

