

Classical Problems of Synchronization

 Bounded-Buffer Problem
 Readers and Writers Problem
 Dining-Philosophers Problem

Producer / Consumer Problem

● Producer generate Items

● Consumer consume item

● What will happen if

– Rate to producer > rate to consume?

– Rate to producer < rate to consume?

– Rate to produce == to Rate to consume?

Producer/Consumer Problem-> Solution

● Two Situation

– Unbounded Buffer

– Bounded buffer – limited size
● When buffer is full,

● producer wait until items are consumed.

● Rate of consumption > rate of production, result to empty
buffer.

● Producer Consumer problems also known as Bounded
Buffer Problem.

Producer/Consumer Problem-> Solution

● Solution to this must satisfy the following condition

– A producer must not overwrite a full buffer

– Consumer must not consume an empty buffer

– Consumer and buffer must access buffer in a mutually exclusive
manner

● Variable count keep track number of item (N) in buffer

● For Producer

– If count = n -> buffer is full then producer go to sleep

– If count ≠ n producer add item and increment count
● For Consumer

– If count = 0 - > buffer empty, consumer go to sleep

– If count ≠ 0 consumer remove an item and decrement counter

Bounded-Buffer Problem

 Assume pool consists of n buffers, each capable of
holding one object.

 Shared data
type item = …
var buffer = …
full, empty, mutex: semaphore;
nextp, nextc: item;
full :=0; empty := n; mutex :=1;

Bounded-Buffer Problem (Cont.)

 Producer process
repeat

…
produce an item in nextp

 …
wait(empty);
wait(mutex);

 …
signal(mutex);
signal(full);

until false;

Bounded-Buffer Problem (Cont.)

 Consumer process
repeat
wait(full)
wait(mutex);
 …
remove an item from buffer to nextc
 …
signal(mutex);
signal(empty);
 …
consume the item in nextc
 …
until false;

Readers-Writers Problem

● Suppose that a database is to be shared among several
concurrent processes.

● Some of these processes may want only to read the
database, whereas others may want to update (that is, to
read and write) the database.

● Two types of processes by referring to the former as
readers and to the latter as writers.

● Problem:

– allow multiple readers to read at the same time.

– Only one single writer can access the shared data at
the same time.

Readers-Writers Problem

 Shared Data

– Data set

– Semaphore mutex initialized to 1.

– Semaphore wrt initialized to 1.

– Integer readcount initialized to 0
 Writer process

wait(wrt);

 …

writing is performed

 …

signal(wrt);

Readers-Writers Problem (Cont.)

 Reader process
wait(mutex);
readcount := readcount +1;
if readcount = 1 then wait(wrt);
signal(mutex);
 …
reading is performed
 …
wait(mutex);
readcount := readcount – 1;
if readcount = 0 then signal(wrt);

signal(mutex):

Dining-Philosophers Problem

● Consider five philosophers who spend their lives thinking and eating.

● The philosophers share a circular table surrounded by five chairs, each belonging
to one philosopher.

● In the center of the table is a bowl of rice, and the table is laid with five single
chopsticks.

● When a philosopher thinks, she does not interact with her colleagues. From time
to time, a philosopher gets hungry and tries to pick up the two chopsticks that are
closest to her (the chopsticks that are between her and her left and right
neighbors).

● A philosopher may pick up only one chopstick at a time.

● Obviously, she cannot pick up a chopstick that is already in the hand of a neighbor.

● When a hungry philosopher has both her chopsticks at the same time, she eats
without releasing her chopsticks.

● When she is finished eating, she puts down both of her chopsticks and starts
thinking again.

Dining-Philosophers Problem

 Shared data
– Bowl of rice (data set)

– Semaphore chopstick [5] (array [0..4]) initialized to 1

Dining-Philosophers Problem (Cont.)

 Philosopher i:
repeat
wait(chopstick[i])
wait(chopstick[i+1 mod 5])
 …
eat
 …
signal(chopstick[i]);
signal(chopstick[i+1 mod 5]);
 …
think
 …
until false;

Dining-Philosophers Problem (Cont.)

● Although this solution guarantees that no two neighbors
are eating simultaneously, it nevertheless must be rejected
because it could create a deadlock.

● Suppose that all five philosophers become hungry
simultaneously and each grabs her left chopstick.

● All the elements of chopstick will now be equal to 0.

● When each philosopher tries to grab her right chopstick,
she will be delayed forever.

Dining-Philosophers Problem (Cont.)

● Several possible remedies to the deadlock problem are listed
next.

– Allow at most four philosophers to be sitting
simultaneously at the table.

– Allow a philosopher to pick up her chopsticks only if both
chopsticks are available (to do this, she must pick them up
in a critical section).

– Use an asymmetric solution; that is, an odd philosopher
picks up first her left chopstick and then her right
chopstick, whereas an even philosopher picks up her right
chopstick and then her left chopstick

Monitors

Monitors

 High-level synchronization construct that allows the safe
sharing of an abstract data type among concurrent
processes.

 A monitor type is an ADT which presents a set of
programmer-defined operations that are provided mutual
exclusion within the monitor.

 The monitor type also contains the declaration of
variables whose values define the state of an instance of
that type, along with the bodies of procedures or
functions that operate on those variables.

Monitors

● The monitor is a programming-language construct that
provides equivalent functionality to that of semaphores and
that is easier to control.

● Implemented in a number of programming languages,
including

– Concurrent Pascal, Pascal-Plus,

– Modula-2, Modula-3, and Java.

Chief characteristics

● Local data variables are accessible only by the monitor.

● Process enters monitor by invoking one of its procedures.

● Only one process may be executing in the monitor at a time.

● Synchronization achieved by condition variables within a
monitor

– only accessible by the monitor.
● Monitor Functions:

– Cwait(c): Suspend execution of the calling process on
condition c

– Csignal(c) Resume execution of some process blocked
after a cwait on the same condition

Structure

Monitors

 To allow a process to wait within the monitor, a condition
variable must be declared, as

var x, y: condition
 Condition variable can only be used with the operations wait

and signal.
 The operation

x.wait;
means that the process invoking this opeation is
suspended until another process invokes
x.signal;

 The x.signal operation resumes exactly one suspended
process. If no process is suspended, then the signal
operation has no effect.

Schematic view of a monitor

Monitor with condition variables

Dining Philosophers Example

type dining-philosophers = monitor
var state : array [0..4] of :(thinking, hungry, eating);
var self : array [0..4] of condition;
procedure entry pickup (i: 0..4);
begin
state[i] := hungry,
test (i);
if state[i]  eating then self[i], wait,
end;

procedure entry putdown (i: 0..4);
begin
state[i] := thinking;
test (i+4 mod 5);
test (i+1 mod 5);
end;

Dining Philosophers (Cont.)

procedure test(k: 0..4);
begin
if state[k+4 mod 5]  eating
and state[k] = hungry
and state[k+1 mod 5]]  eating
then begin
state[k] := eating;
self[k].signal;
end;
end;

begin
for i := 0 to 4

do state[i] := thinking;

end.

Dining Philosophers (Cont.)

Dining Philosophers (Cont.)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

