

Deadlocks

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

 Combined Approach to Deadlock Handling

The Deadlock Problem

 A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set.

 Example
 System has 2 tape drives.
 P1 and P2 each hold one tape drive and each needs another one.

 Example
 semaphores A and B, initialized to 1

 P0 P1

wait (A); wait(B)
wait (B); wait(A)

Deadlock

Bridge Crossing Example

 Traffic only in one direction.

 Each section of a bridge can be viewed as a resource.

 If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback).

 Several cars may have to be backed upif a deadlock occurs.

 Starvation is possible.

System Model

 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:
 request
 use
 release

Deadlock Characterization

 Mutual exclusion: only one process at a time can use a
resource.

 Hold and wait: a process holding at least one resource is waiting
to acquire additional resources held by other processes.

 No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task.

 Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P0 is waiting for a resource that is held by
P1, P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting
for a resource that is held by Pn, and P0 is waiting for a resource
that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

Resource-Allocation Graph

 A set of vertices V and a set of edges E.

 V is partitioned into two types:
 P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system.

 R = {R1, R2, …, Rm}, the set consisting of all resource
types in the system.

 request edge – directed edge P1  Rj

 assignment edge – directed edge Rj  Pi

Resource-Allocation Graph (Cont.)

 Process

 Resource Type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

Example of a Resource Allocation Graph

Resource Allocation Graph With A Deadlock

Resource Allocation Graph With A Cycle But No Deadlock

Basic Facts

 If graph contains no cycles  no deadlock.

 If graph contains a cycle 
 if only one instance per resource type, then

deadlock.
 if several instances per resource type, possibility of

deadlock.

Methods for Handling Deadlocks

Methods for Handling Deadlocks

 Ensure that the system will never enter a deadlock
state.

 Allow the system to enter a deadlock state and then
recover.

 Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX.

Methods for Handling Deadlocks

 Deadlock Prevention

– Ensure that at least one of four necessary conditions cannot hold

 Deadlock Avoidance

– Do not allow a resource request → Potential to lead to a deadlock

– Requires advance info of all requests

 Deadlock Detection

– Always allow resource requests

– Periodically check for deadlocks

– If a deadlock exists → Recover from it
 Ignore

– Makes sense if the likelihood is very low, say once per year

– Cheaper than prevention, avoidance or detection

– Used by most common OS

Prevention vs Avoidance

 Deadlock Prevention (Ex: Traffic Light)

– preventing deadlocks by constraining how requests for
the resources can be made in system and how they are
handled; designing the system.

– The goal is to ensure that at least one of the necessary
conditions cannot hold.

 Deadlock Avoidance (Ex: Traffic Policeman)

– The system dynamically considers every request at every
point and decides whether it is safe to grant the request.

– The OS requires advance additional information
concerning which resources a process will request and
use during its lifetime.

Deadlock Prevention

Deadlock Prevention

 Mutual Exclusion – not required for sharable resources;
must hold for nonsharable resources.

 Hold and Wait – must guarantee that whenever a
process requests a resource, it does not hold any other
resources.
 Require process to request and be allocated all its

resources before it begins execution, or allow process
to request resources only when the process has
none.

 Low resource utilization; starvation possible.

Restrain the ways request can be made.

Deadlock Prevention (Cont.)

 No Preemption –
 If a process that is holding some resources requests

another resource that cannot be immediately allocated
to it, then all resources currently being held are
released.

 Preempted resources are added to the list of resources
for which the process is waiting.

 Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

 Circular Wait – impose a total ordering of all resource
types, and require that each process requests resources
in an increasing order of enumeration.

Deadlock Prevention: Circular Wait

 Let R = { R1, R2, ... , Rm} be the set of resource types. We
assign to each resource type a unique integer number,
which allows us to compare two resources and to
determine whether one precedes another in our ordering.

F (tape drive) = 1

F (disk drive) = 5

F (printer) = 12

Deadlock Prevention: Circular Wait

 Each process can request resources only in an increasing
order of enumeration.

 That is, a process can initially request any number of
instances of a resource type -say, R;

 After that, the process can request instances of resource
type Rj if and only if F(Rj) > F(Ri).

 Alternatively, we can require that a process requesting an
instance of resource type Rj must have released any
resources R; such that F(Ri) >= F(Rj).

 It must also be noted that if several instances of the same
resource type are needed, a single request for all of them
must be issued.

Deadlock Avoidance

Deadlock Avoidance

 Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need.

 The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure that
there can never be a circular-wait condition.

 Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

Requires that the system has some additional a priori
information available.

Safe State

 When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

 System is in safe state if there exists a safe sequence of all
processes.

 Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources
that Pi can still request can be satisfied by currently available
resources + resources held by all the Pj, with j<I.
 If Pi resource needs are not immediately available, then Pi

can wait until all Pj have finished.
 When Pj is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate.
 When Pi terminates, Pi+1 can obtain its needed resources,

and so on.

Basic Facts

 If a system is in safe state  no deadlocks.

 If a system is in unsafe state  possibility of deadlock.

 Avoidance  ensure that a system will never enter an
unsafe state.

Safe, unsafe , deadlock state spaces

Resource-Allocation Graph Algorithm

 Claim edge Pi  Rj indicated that process Pj may
request resource Rj; represented by a dashed line.

 Claim edge converts to request edge when a process
requests a resource.

 When a resource is released by a process, assignment
edge reconverts to a claim edge.

 Resources must be claimed a priori in the system.

Resource-Allocation Graph For Deadlock Avoidance

Unsafe State In A Resource-Allocation Graph

Banker’s Algorithm

 Multiple instances.

 Each process must a priori claim maximum use.

 When a process requests a resource it may have to
wait.

 When a process gets all its resources it must return
them in a finite amount of time.

Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If available [j] = k, there are k
instances of resource type Rj available.

 Max: n x m matrix. If Max [i,j] = k, then process Pi may request
at most k instances of resource type Rj.

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj.

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work := Available
Finish [i] = false for i - 1,3, …, n.

2. Find and i such that both:
(a) Finish [i] = false
(b) Needi  Work

If no such i exists, go to step 4.

3. Work := Work + Allocationi

Finish[i] := true
go to step 2.

4. If Finish [i] = true for all i, then the system is in a safe state.

Resource-Request Algorithm for Process Pi

 Requesti = request vector for process Pi.

If Requesti [j] = k then process Pi wants k instances of resource type Rj.

1.If Requesti  Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2.If Requesti  Available, go to step 3. Otherwise Pi must wait,
since resources are not available.

3.Pretend to allocate requested resources to Pi by modifying the
state as follows:

Available := Available - Requesti;

Allocationi := Allocationi + Requesti;

Needi := Needi – Requesti ;
• If safe  the resources are allocated to Pi.
• If unsafe  Pi must wait, and the old resource-allocation state

is restored

Example of Banker’s Algorithm

 5 processes P0 through P4; 3 resource types A (10 instances),
B (5instances, and C (7 instances).

 Snapshot at time T0:

Example (Cont.)

 The content of the matrix. Need is defined to be Max – Allocation.

 Need

 A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

 The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria.

Example (Cont.): P1 request (1,0,2)

 Check that Request  Available (that is, (1,0,2)  (3,3,2)
 true.

 Executing safety algorithm shows that sequence <P1, P3,
P4, P0, P2> satisfies safety requirement.

 Can request for (3,3,0) by P4 be granted?

 Can request for (0,2,0) by P0 be granted?

Deadlock Detection

Deadlock Detection

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

Single Instance of Each Resource Type

 Maintain wait-for graph
 Nodes are processes.
 Pi  Pj if Pi is waiting for Pj.

 Periodically invoke an algorithm that searches for acycle
in the graph.

 An algorithm to detect a cycle in a graph requires an
order of n2 operations, where n is the number of vertices
in the graph.

Resource-Allocation Graph And Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Several Instances of a Resource Type

 Available: A vector of length m indicates the number of
available resources of each type.

 Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each
process.

 Request: An n x m matrix indicates the current request
of each process. If Request [ij] = k, then process Pi is
requesting k more instances of resource type. Rj.

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:

(a) Work = Available

(b)For i = 1,2, …, n, if Allocationi  0, then
Finish[i] := false;otherwise, Finish[i] := true.

2. Find an index i such that both:

(a)Finish[i] = false
(b)Requesti  Work

If no such i exists, go to step 4.

Detection Algorithm (Cont.)

3. Work := Work + Allocationi

Finish[i] := true
go to step 2.

4. If Finish[i] = false, for some i, 1  i  n, then the system
is in deadlock state. Moreover, if Finish[i] = false, then Pi
is deadlocked.

 Algorithm requires an order of m x n2 operations to
detect whether the system is in deadlocked state.

Example of Detection Algorithm

 Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances).

 Snapshot at time T0:

 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true
for all i.

Example (Cont.)

 P2 requests an additional instance of type C.

 State of system?
 Can reclaim resources held by process P0, but

insufficient resources to fulfill other processes; requests.
 Deadlock exists, consisting of processes P1, P2, P3, and

P4.

Detection-Algorithm Usage

 When, and how often, to invoke depends on:
 How often a deadlock is likely to occur?
 How many processes will need to be rolled back?

 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there may be
many cycles in the resource graph and so we would not
be able to tell which of the many deadlocked processes
“caused” the deadlock.

Recovery from Deadlock

Recovery from Deadlock: Process Termination

 Abort all deadlocked processes.

 Abort one process at a time until the deadlock cycle is
eliminated.

 In which order should we choose to abort?
 Priority of the process.
 How long process has computed, and how much

longer to completion.
 Resources the process has used.
 Resources process needs to complete.
 How many processes will need to be terminated.
 Is process interactive or batch?

Recovery from Deadlock: Resource Preemption

 Selecting a victim – minimize cost.

 Rollback – return to some safe state, restart process fro
that state.

 Starvation – same process may always be picked as
victim, include number of rollback in cost factor.

Combined Approach to Deadlock Handling

 Combine the three basic approaches
 prevention
 avoidance
 detection

 allowing the use of the optimal approach for each of
resources in the system.

 Partition resources into hierarchically ordered classes.

 Use most appropriate technique for handling deadlocks
within each class.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

