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Background

 Concurrent access to shared data may result in data 
inconsistency.

 Maintaining data consistency requires mechanisms to 
ensure the orderly execution of cooperating processes.



  

A Simple Example

void echo()

{

chin = getchar();

chout = chin;

putchar(chout); 

}



  

A Simple Example

Process P1 Process P2

.  .

in = getchar();  .

.  in = getchar();

chout = chin;  chout = chin;

putchar(chout);  .

.  putchar(chout);

.  .



The Critical-Section Problem
 n processes all competing to use some shared data
 Each process has a code segment, called critical section, in which 

the shared data is accessed.
 Problem – ensure that when one process is executing in its critical 

section, no other process is allowed to execute in its critical 
section.

 Structure of process Pi

repeat 

    entry section

          critical section

    exit section

           reminder section

until false;



Solution to Critical-Section Problem

1.Mutual Exclusion.  If process Pi is executing in its critical section, 
then no other processes can be executing in their critical sections.

2.Progress.  If no process is executing in its critical section and there 
exist some processes that wish to enter their critical section, then the 
selection of the processes that will enter the critical section next 
cannot be postponed indefinitely.

3.Bounded Waiting.  A bound must exist on the number of times that 
other processes are allowed to enter their critical sections after a 
process has made a request to enter its critical section and before 
that request is granted.

- Assume that each process executes at a nonzero speed 

-  No assumption concerning relative speed of the n 
processes.



Initial Attempts to Solve Problem

 Only 2  processes, P0 and P1

 General structure of process Pi (other process Pj)

repeat

entry section

critical section

exit section

reminder section

until false;
 Processes may share some common variables to 

synchronize their actions.



  

First Attempt

 Busy Waiting
 Process is always checking to see if it can 

enter the critical section
 Process can do nothing productive until it 

gets permission to enter its critical section



Algorithm 1

 Shared variables: 
 var turn: (0..1);

initially turn = 0
 turn i  Pi can enter its critical section

 Process Pi

repeat

while turn  i do no-op;

critical section

turn := j;

reminder section

until false;
 Satisfies mutual exclusion, but not progress



  

Second Attempt

 Each process can examine the other’s 
status but cannot alter it

 When a process wants to enter the critical 
section is checks the other processes first

 If no other process is in the critical section, 
it sets its status for the critical section

 This method does not guarantee mutual 
exclusion

 Each process can check the flags and then 
proceed to enter the critical section at the 
same time



  

Third Attempt

 Set flag to enter critical section before 
check other processes

 If another process is in the critical section 
when the flag is set, the process is 
blocked until the other process releases 
the critical section

 Deadlock is possible when two process 
set their flags to enter the critical section.  
Now each process must wait for the other 
process to release the critical section



Algorithm 2
 Shared variables

 var flag: array [0..1] of boolean;
initially flag [0] = flag [1] = false.

 flag [i] = true  Pi ready to enter its critical section
 Process Pi

repeat

flag[i] := true;
while flag[j] do no-op;

critical section

flag [i] := false;

remainder section

until false;
 Satisfies mutual exclusion, but not progress requirement.



  

Fourth Attempt

 A process sets its flag to indicate its 
desire to enter its critical section but is 
prepared to reset the flag

 Other processes are checked.  If they 
are in the critical region, the flag is 
reset and later set to indicate desire to 
enter the critical region.  This is 
repeated until the process can enter the 
critical region.



  

Fourth Attempt

 It is possible for each process to set 
their flag, check other processes, and 
reset their flags.  This scenario will not 
last very long so it is not deadlock.  It is 
undesirable



  

Correct Solution

 Each process gets a turn at the critical 
section

 If a process wants the critical section, it 
sets its flag and may have to wait for its 
turn



Algorithm 3
 Combined shared variables of algorithms 1 and 2.
 Process Pi

repeat

flag [i] := true;
turn := j;
while (flag [j] and turn = j) do no-op;

critical section

flag [i] := false;

remainder section

until false;
 Meets all three requirements; solves the critical-section 

problem for two processes.



Mutual Exclusion with Test-
and-Set
 Shared data: var lock: boolean (initially false)
 Process Pi

repeat 

while Test-and-Set (lock) do no-op;

critical section

lock := false;

remainder section

until false;



  

Mutual Exclusion:
Hardware Support
 Test and Set Instruction
boolean testset (int i) {
if (i == 0) {
i = 1;
return true;
}
else {
return false;
}
}



  

Mutual Exclusion:
Hardware Support
 Exchange Instruction

void exchange(int register, 
int memory) {

int temp;

temp = memory;

memory = register;

register = temp;

}



  

Mutual Exclusion 
Machine Instructions
 Advantages

 Applicable to any number of processes on 
either a single processor or multiple 
processors sharing main memory

 It is simple and therefore easy to verify
 It can be used to support multiple critical 

sections



  

Mutual Exclusion 
Machine Instructions
 Disadvantages

 Busy-waiting consumes processor time
 Starvation is possible when a process 

leaves a critical section and more than one 
process is waiting.  

 Deadlock
 If a low priority process has the critical region 

and a higher priority process needs, the higher 
priority process will obtain the processor to wait 
for the critical region



  

Semaphores

 Semaphore is a variable that has an 
integer value
 May be initialized to a nonnegative number
 Wait operation decrements the semaphore 

value
 Signal operation increments semaphore 

value



  

Semaphores

 Special variable called a semaphore is 
used for signaling

 If a process is waiting for a signal, it is 
suspended until that signal is sent

 Wait and signal operations cannot be 
interrupted

 Queue is used to hold processes 
waiting on the semaphore



Semaphore

Synchronization tool that does not require busy 
waiting.

Semaphore S – integer variable
can only be accessed via two indivisible 

(atomic) operations

wait (S):  while S 0 do no-op;
S := S – 1;

signal (S): S := S + 1;



Example:  Critical Section of n 
Processes
 Shared variables

 var mutex : semaphore
 initially mutex = 1

 Process Pi

repeat

wait(mutex);

critical section

signal(mutex);

remainder section

until false;



Semaphore as General 
Synchronization Tool
Execute B in Pj only after A executed in Pi

Use semaphore flag initialized to 0
Code:

Pi Pj

   

A wait(flag)

signal(flag) B



Deadlock and Starvation

Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes.

Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

   

signal(S); signal(Q);

signal(Q) signal(S);
Starvation  – indefinite blocking.  A process may never be 

removed from the semaphore queue in which it is suspended.



Two Types of Semaphores

Counting semaphore – integer value can 
range over an unrestricted domain.

Binary semaphore – integer value can 
range only between 0 
and 1; can be simpler to implement.

Can implement a counting semaphore S as 
a binary semaphore.



Classical Problems of Synchronization

Bounded-Buffer Problem
Readers and Writers Problem
Dining-Philosophers Problem



  

Producer/Consumer Problem

 One or more producers are generating 
data and placing these in a buffer

 A single consumer is taking items out of 
the buffer one at time

 Only one producer or consumer may 
access the buffer at any one time



  

Producer

producer:

while (true) {

/* produce item v */

b[in] = v;

in++; 

}



  

Consumer

consumer:
while (true) {
 while (in <= out) 

/*do  nothing */;
w = b[out];
out++; 
/* consume item w */

}



Bounded-Bufer Problem

Shared data
type item = …
var buffer = …

full, empty, mutex: semaphore;
nextp, nextc: item;
full :=0; empty := n; mutex :=1;



Bounded-Bufer Problem 
(Cont.)
Producer process

repeat
…
produce an item in nextp
 …
wait(empty);
wait(mutex);
 …
signal(mutex);
signal(full);
until false;



Bounded-Bufer Problem 
(Cont.)
Consumer process

repeat
wait(full)
wait(mutex);
 …
remove an item from buffer to nextc
 …
signal(mutex);
signal(empty);
 …
consume the item in nextc
 …
until false;



  

Readers/Writers Problem

 Any number of readers may 
simultaneously read the file

 Only one writer at a time may write to 
the file

 If a writer is writing to the file, no reader 
may read it



Readers-Writers Problem

Shared data
var mutex, wrt: semaphore (=1);
readcount : integer (=0);

Writer process
wait(wrt);
 …
writing is performed
 …
signal(wrt);



Readers-Writers Problem 
(Cont.)

Reader process
wait(mutex);
readcount := readcount +1;
if readcount = 1 then wait(wrt);
signal(mutex);
 …
reading is performed
 …
wait(mutex);
readcount := readcount – 1;
if readcount = 0 then signal(wrt);

signal(mutex):



Dining-Philosophers Problem

Shared data 

var chopstick: array [0..4] of semaphore;
(=1 initially)



Dining-Philosophers Problem 
(Cont.)

Philosopher i:
repeat
wait(chopstick[i])
wait(chopstick[i+1 mod 5])
 …
eat
 …
signal(chopstick[i]);
signal(chopstick[i+1 mod 5]);
 …
think
 …
until false;



  

Monitors

 Monitor is a software module
 Chief characteristics

 Local data variables are accessible only by 
the monitor

 Process enters monitor by invoking one of 
its procedures

 Only one process may be executing in the 
monitor at a time



  



High-level synchronization construct that allows the safe sharing of an 
abstract data type among concurrent processes.
type monitor-name = monitor
variable declarations
procedure entry P1 :(…);
begin … end;
procedure entry P2(…);
begin … end;


procedure entry Pn (…);
begin…end;
begin
initialization code
end

MonitorsMonitors



To allow a process to wait within the monitor, a condition 
variable must be declared, as

var x, y: condition
Condition variable can only be used with the operations wait 

and signal.
 The operation

x.wait;
means that the process invoking this opeation is suspended until 
another process invokes

x.signal;
 The x.signal operation resumes exactly one suspended process.  

If no process is suspended, then the signal operation has no 
effect.

Monitors (Cont.)Monitors (Cont.)



Schematic view of a monitorSchematic view of a monitor



Monitor with condition variablesMonitor with condition variables



type dining-philosophers = monitor
var state : array [0..4] of :(thinking, hungry, eating);
var self : array [0..4] of condition;
procedure entry pickup (i: 0..4);
begin
state[i] := hungry,
test (i);
if state[i]  eating then self[i], wait,
end;

procedure entry putdown (i: 0..4);
begin
state[i] := thinking;
test (i+4 mod 5);
test (i+1 mod 5);
end;

Dining Philosophers Example Dining Philosophers Example 



procedure test(k: 0..4);
begin
if state[k+4 mod 5]  eating
and state[k] = hungry
and state[k+1 mod 5] ]  eating
then begin
state[k] := eating;
self[k].signal;
end;

end;

begin
for i := 0 to 4

do state[i] := thinking;

end.

Dining Philosophers (Cont.)Dining Philosophers (Cont.)
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