
Process Synchronization
Background
The Critical-Section Problem
Synchronization Hardware
Semaphores
Classical Problems of Synchronization
Monitors
Deadlocks

Background

 Concurrent access to shared data may result in data
inconsistency.

 Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes.

A Simple Example

void echo()

{

chin = getchar();

chout = chin;

putchar(chout);

}

A Simple Example

Process P1 Process P2

. .

in = getchar(); .

. in = getchar();

chout = chin; chout = chin;

putchar(chout); .

. putchar(chout);

. .

The Critical-Section Problem
 n processes all competing to use some shared data
 Each process has a code segment, called critical section, in which

the shared data is accessed.
 Problem – ensure that when one process is executing in its critical

section, no other process is allowed to execute in its critical
section.

 Structure of process Pi

repeat

 entry section

 critical section

 exit section

 reminder section

until false;

Solution to Critical-Section Problem

1.Mutual Exclusion. If process Pi is executing in its critical section,
then no other processes can be executing in their critical sections.

2.Progress. If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely.

3.Bounded Waiting. A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted.

- Assume that each process executes at a nonzero speed

- No assumption concerning relative speed of the n
processes.

Initial Attempts to Solve Problem

 Only 2 processes, P0 and P1

 General structure of process Pi (other process Pj)

repeat

entry section

critical section

exit section

reminder section

until false;
 Processes may share some common variables to

synchronize their actions.

First Attempt

 Busy Waiting
 Process is always checking to see if it can

enter the critical section
 Process can do nothing productive until it

gets permission to enter its critical section

Algorithm 1

 Shared variables:
 var turn: (0..1);

initially turn = 0
 turn i Pi can enter its critical section

 Process Pi

repeat

while turn i do no-op;

critical section

turn := j;

reminder section

until false;
 Satisfies mutual exclusion, but not progress

Second Attempt

 Each process can examine the other’s
status but cannot alter it

 When a process wants to enter the critical
section is checks the other processes first

 If no other process is in the critical section,
it sets its status for the critical section

 This method does not guarantee mutual
exclusion

 Each process can check the flags and then
proceed to enter the critical section at the
same time

Third Attempt

 Set flag to enter critical section before
check other processes

 If another process is in the critical section
when the flag is set, the process is
blocked until the other process releases
the critical section

 Deadlock is possible when two process
set their flags to enter the critical section.
Now each process must wait for the other
process to release the critical section

Algorithm 2
 Shared variables

 var flag: array [0..1] of boolean;
initially flag [0] = flag [1] = false.

 flag [i] = true Pi ready to enter its critical section
 Process Pi

repeat

flag[i] := true;
while flag[j] do no-op;

critical section

flag [i] := false;

remainder section

until false;
 Satisfies mutual exclusion, but not progress requirement.

Fourth Attempt

 A process sets its flag to indicate its
desire to enter its critical section but is
prepared to reset the flag

 Other processes are checked. If they
are in the critical region, the flag is
reset and later set to indicate desire to
enter the critical region. This is
repeated until the process can enter the
critical region.

Fourth Attempt

 It is possible for each process to set
their flag, check other processes, and
reset their flags. This scenario will not
last very long so it is not deadlock. It is
undesirable

Correct Solution

 Each process gets a turn at the critical
section

 If a process wants the critical section, it
sets its flag and may have to wait for its
turn

Algorithm 3
 Combined shared variables of algorithms 1 and 2.
 Process Pi

repeat

flag [i] := true;
turn := j;
while (flag [j] and turn = j) do no-op;

critical section

flag [i] := false;

remainder section

until false;
 Meets all three requirements; solves the critical-section

problem for two processes.

Mutual Exclusion with Test-
and-Set
 Shared data: var lock: boolean (initially false)
 Process Pi

repeat

while Test-and-Set (lock) do no-op;

critical section

lock := false;

remainder section

until false;

Mutual Exclusion:
Hardware Support
 Test and Set Instruction
boolean testset (int i) {
if (i == 0) {
i = 1;
return true;
}
else {
return false;
}
}

Mutual Exclusion:
Hardware Support
 Exchange Instruction

void exchange(int register,
int memory) {

int temp;

temp = memory;

memory = register;

register = temp;

}

Mutual Exclusion
Machine Instructions
 Advantages

 Applicable to any number of processes on
either a single processor or multiple
processors sharing main memory

 It is simple and therefore easy to verify
 It can be used to support multiple critical

sections

Mutual Exclusion
Machine Instructions
 Disadvantages

 Busy-waiting consumes processor time
 Starvation is possible when a process

leaves a critical section and more than one
process is waiting.

 Deadlock
 If a low priority process has the critical region

and a higher priority process needs, the higher
priority process will obtain the processor to wait
for the critical region

Semaphores

 Semaphore is a variable that has an
integer value
 May be initialized to a nonnegative number
 Wait operation decrements the semaphore

value
 Signal operation increments semaphore

value

Semaphores

 Special variable called a semaphore is
used for signaling

 If a process is waiting for a signal, it is
suspended until that signal is sent

 Wait and signal operations cannot be
interrupted

 Queue is used to hold processes
waiting on the semaphore

Semaphore

Synchronization tool that does not require busy
waiting.

Semaphore S – integer variable
can only be accessed via two indivisible

(atomic) operations

wait (S): while S 0 do no-op;
S := S – 1;

signal (S): S := S + 1;

Example: Critical Section of n
Processes
 Shared variables

 var mutex : semaphore
 initially mutex = 1

 Process Pi

repeat

wait(mutex);

critical section

signal(mutex);

remainder section

until false;

Semaphore as General
Synchronization Tool
Execute B in Pj only after A executed in Pi

Use semaphore flag initialized to 0
Code:

Pi Pj

A wait(flag)

signal(flag) B

Deadlock and Starvation

Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes.

Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

signal(S); signal(Q);

signal(Q) signal(S);
Starvation – indefinite blocking. A process may never be

removed from the semaphore queue in which it is suspended.

Two Types of Semaphores

Counting semaphore – integer value can
range over an unrestricted domain.

Binary semaphore – integer value can
range only between 0
and 1; can be simpler to implement.

Can implement a counting semaphore S as
a binary semaphore.

Classical Problems of Synchronization

Bounded-Buffer Problem
Readers and Writers Problem
Dining-Philosophers Problem

Producer/Consumer Problem

 One or more producers are generating
data and placing these in a buffer

 A single consumer is taking items out of
the buffer one at time

 Only one producer or consumer may
access the buffer at any one time

Producer

producer:

while (true) {

/* produce item v */

b[in] = v;

in++;

}

Consumer

consumer:
while (true) {
 while (in <= out)

/*do nothing */;
w = b[out];
out++;
/* consume item w */

}

Bounded-Bufer Problem

Shared data
type item = …
var buffer = …

full, empty, mutex: semaphore;
nextp, nextc: item;
full :=0; empty := n; mutex :=1;

Bounded-Bufer Problem
(Cont.)
Producer process

repeat
…
produce an item in nextp
 …
wait(empty);
wait(mutex);
 …
signal(mutex);
signal(full);
until false;

Bounded-Bufer Problem
(Cont.)
Consumer process

repeat
wait(full)
wait(mutex);
 …
remove an item from buffer to nextc
 …
signal(mutex);
signal(empty);
 …
consume the item in nextc
 …
until false;

Readers/Writers Problem

 Any number of readers may
simultaneously read the file

 Only one writer at a time may write to
the file

 If a writer is writing to the file, no reader
may read it

Readers-Writers Problem

Shared data
var mutex, wrt: semaphore (=1);
readcount : integer (=0);

Writer process
wait(wrt);
 …
writing is performed
 …
signal(wrt);

Readers-Writers Problem
(Cont.)

Reader process
wait(mutex);
readcount := readcount +1;
if readcount = 1 then wait(wrt);
signal(mutex);
 …
reading is performed
 …
wait(mutex);
readcount := readcount – 1;
if readcount = 0 then signal(wrt);

signal(mutex):

Dining-Philosophers Problem

Shared data

var chopstick: array [0..4] of semaphore;
(=1 initially)

Dining-Philosophers Problem
(Cont.)

Philosopher i:
repeat
wait(chopstick[i])
wait(chopstick[i+1 mod 5])
 …
eat
 …
signal(chopstick[i]);
signal(chopstick[i+1 mod 5]);
 …
think
 …
until false;

Monitors

 Monitor is a software module
 Chief characteristics

 Local data variables are accessible only by
the monitor

 Process enters monitor by invoking one of
its procedures

 Only one process may be executing in the
monitor at a time

High-level synchronization construct that allows the safe sharing of an
abstract data type among concurrent processes.
type monitor-name = monitor
variable declarations
procedure entry P1 :(…);
begin … end;
procedure entry P2(…);
begin … end;

procedure entry Pn (…);
begin…end;
begin
initialization code
end

MonitorsMonitors

To allow a process to wait within the monitor, a condition
variable must be declared, as

var x, y: condition
Condition variable can only be used with the operations wait

and signal.
 The operation

x.wait;
means that the process invoking this opeation is suspended until
another process invokes

x.signal;
 The x.signal operation resumes exactly one suspended process.

If no process is suspended, then the signal operation has no
effect.

Monitors (Cont.)Monitors (Cont.)

Schematic view of a monitorSchematic view of a monitor

Monitor with condition variablesMonitor with condition variables

type dining-philosophers = monitor
var state : array [0..4] of :(thinking, hungry, eating);
var self : array [0..4] of condition;
procedure entry pickup (i: 0..4);
begin
state[i] := hungry,
test (i);
if state[i] eating then self[i], wait,
end;

procedure entry putdown (i: 0..4);
begin
state[i] := thinking;
test (i+4 mod 5);
test (i+1 mod 5);
end;

Dining Philosophers Example Dining Philosophers Example

procedure test(k: 0..4);
begin
if state[k+4 mod 5] eating
and state[k] = hungry
and state[k+1 mod 5]] eating
then begin
state[k] := eating;
self[k].signal;
end;

end;

begin
for i := 0 to 4

do state[i] := thinking;

end.

Dining Philosophers (Cont.)Dining Philosophers (Cont.)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

