
Threads and Multithreading

Multiprocessing

• Modern operating systems are multiprocessing

• Appear to do more than one thing at a time

• Three general approaches:
– Cooperative multiprocessing

– Preemptive multiprocessing

– Really having multiple processors

Multithreading

• Multithreading programs appear to do more than
one thing at a time

• Same ideas as multiprocessing, but within a single
program

• More efficient than multiprocessing

• Java tries to hide the underlying multiprocessing
implementation

Why multithreading?

• Allows you to do more than one thing at once
– Play music on your computer’s CD player,

– Download several files in the background,

– while you are writing a letter

• Multithreading is essential for animation
– One thread does the animation

– Another thread responds to user inputs

Threads

• A Thread is a single flow of control
– When you step through a program, you are following a

Thread

• Your previous programs all had one Thread
• A Thread is an Object you can create and control

Sleeping

• Every program uses at least one Thread

• Thread.sleep(int milliseconds);

• try { Thread.sleep(1000); }
catch (InterruptedException e) { }

• sleep only works for the current Thread

States of a Thread

• A Thread can be in one of four states:
– Ready: all set to run

– Running: actually doing something

– Waiting, or blocked: needs something

– Dead: will never do anything again

• State names vary across textbooks

• You have some control, but the Java scheduler has
more

State transitions

ready

waiting

running deadstart

Two ways of creating Threads

• You can extend the Thread class:
– class Animation extends Thread {…}
– Limiting, since you can only extend one class

• Or you can implement the Runnable interface:
– class Animation implements Runnable {…}
– requires public void run()

• I recommend the second for most programs

Extending Thread

• class Animation extends Thread {
public void run() { code for this thread }
Anything else you want in this class

}
• Animation anim = new Animation();

– A newly created Thread is in the Ready state

• To start the anim Thread running, call anim.start();
• start() is a request to the scheduler to run the Thread --it

may not happen right away
• The Thread should eventually enter the Running state

Implementing Runnable

• class Animation implements Runnable {…}
• The Runnable interface requires run()

– This is the “main” method of your new Thread

• Animation anim = new Animation();
• Thread myThread = new Thread(anim);
• To start the Thread running, call myThread.start();

– You do not write the start() method—it’s provided by Java

• As always, start() is a request to the scheduler to run the
Thread--it may not happen right away

Starting a Thread

• Every Thread has a start() method

• Do not write or override start()
• You call start() to request a Thread to run

• The scheduler then (eventually) calls run()
• You must supply public void run()

– This is where you put the code that the Thread is going to
run

Extending Thread: summary

class Animation extends Thread {
public void run() {

while (okToRun) { ... }
}

}

Animation anim = new Animation();
anim.start();

Implementing Runnable:
summary

class Animation extends Applet
implements Runnable {

public void run() {
while (okToRun) { ... }

}
}

Animation anim = new Animation();
Thread myThread = new Thread(anim);
myThread.start();

Demo

Example I
class MyThread extends Thread {

private String name, msg;
public MyThread(String name, String msg) {
this.name = name;
this.msg = msg;

}
public void run() {

System.out.println(name + " starts its execution");
for (int i = 0; i < 5; i++) {

System.out.println(name + " says: " + msg);
try {

Thread.sleep(5000);
} catch (InterruptedException ie) {}

}
System.out.println(name + " finished execution");
}

}

Example I
class MyThread extends Thread {

private String name, msg;
public MyThread(String name, String msg) {
this.name = name;
this.msg = msg;

}
public void run() {

System.out.println(name + " starts its execution");
for (int i = 0; i < 5; i++) {

System.out.println(name + " says: " + msg);
try {

Thread.sleep(5000);
} catch (InterruptedException ie) {}

}
System.out.println(name + " finished execution");
}

}

Example I
class MyThread extends Thread {

private String name, msg;
public MyThread(String name, String msg) {
this.name = name;
this.msg = msg;

}

public void run() {
System.out.println(name + " starts its execution");
for (int i = 0; i < 5; i++) {

System.out.println(name + " says: " + msg);
try {

Thread.sleep(5000);
} catch (InterruptedException ie) {}

}
System.out.println(name + " finished execution");
}

}

Example I

public class test {
public static void main(String[] args) {

MyThread mt1 = new MyThread("thread1", "ping");
MyThread mt2 = new MyThread("thread2", "pong");
mt1.start();
mt2.start();

}
}

These Two Threads will run in parallel

Example II
class MyThread implements Runnable {

private String name, msg;
public MyThread(String name, String msg) {
this.name = name;
this.msg = msg;

}
public void run() {

System.out.println(name + " starts its execution");
for (int i = 0; i < 5; i++) {

System.out.println(name + " says: " + msg);
try {

Thread.sleep(5000);
} catch (InterruptedException ie) {}

}
System.out.println(name + " finished execution");
}

}

Example II
class MyThread implements Runnable {

private String name, msg;
public MyThread(String name, String msg) {
this.name = name;
this.msg = msg;

}
public void run() {

System.out.println(name + " starts its execution");
for (int i = 0; i < 5; i++) {

System.out.println(name + " says: " + msg);
try {

Thread.sleep(5000);
} catch (InterruptedException ie) {}

}
System.out.println(name + " finished execution");
}

}

Example II
class MyThread implements Runnable {

private String name, msg;
public MyThread(String name, String msg) {
this.name = name;
this.msg = msg;

}

public void run() {
System.out.println(name + " starts its execution");
for (int i = 0; i < 5; i++) {

System.out.println(name + " says: " + msg);
try {

Thread.sleep(5000);
} catch (InterruptedException ie) {}

}
System.out.println(name + " finished execution");
}

}

Example II

public class test {
public static void main(String[] args) {

MyThread mt1 = new MyThread("thread1", "ping");
MyThread mt2 = new MyThread("thread2", "pong");
Thread T1 = new Thread(mt1);
Thread T2 = new Thread(mt2);
T1.start();
T2.start();

}
}

These Two Threads will run in parallel

Typical output of the previous examples:
thread1 starts its execution
thread1 says: ping
thread2 starts its execution
thread2 says: pong
thread1 says: ping
thread2 says: pong
thread1 says: ping
thread2 says: pong
thread1 says: ping
thread2 says: pong
thread1 says: ping
thread2 says: pong
thread1 finished execution
thread2 finished execution

