

Bankers Algorithms

Ref: https://www.geeksforgeeks.org/bankers-algorithm-in-operating-system-2/

Problem Statement

Write a program to implement Banker's Algorithm
for deadlock handling.

Input Required

● Number of processes in the system (n)
● The number of resources types (m)
● Maximum Resources: the number of available

resources of each type.
– It is a 1-d array of size m

● Max: maximum demand of each process in a
system.
– It is a 2-d array of size n*m

● Allocation: the number of resources of each type
currently allocated to each process.
– It is a 2-d array of size n*m

Calculations

● Need: indicates the remaining resource need of
each process.
– It is a 2-d array of size n*m

– Need [i, j] = Max [i, j] – Allocation [i, j]

● Allocated: Total number of allocated resources
of each type. Addition of resource type column
wise from Allocation array.
– It is a 1-d array of size m

● Work/Available:
– It is a 1-d array of size m

– Work[i]=Available[i] - Allocated[i]

Expected Output

● One Safe Sequence

● Variations:
– Mutliple Safe Sequence

– Resource Request for Process

Example: Sample Input

● Number of processes, n = 5 (P0, P1, P2, P3, P4)
● Number of resources types, m = 3 (A, B, C)
● Maximum Resources: A has 10 instances, B has 5 instances

and C has 7 instances.
● Maximum Resources = [10, 5, 7]

Example: Calculations

● Allocated = [7, 2, 5]
● Work/Available =

[3, 3, 2] =

[10, 5, 7] – [7, 2, 5]

Example: Sample Output
Max Allocation Need

A B C A B C A B C

P0 7 5 3 0 1 0 7 4 3

P1 3 2 2 2 0 0 1 2 2

P2 9 0 2 3 0 2 6 0 0

P3 2 2 2 2 1 1 0 1 1

P4 4 3 3 0 0 2 4 3 1

Available

A B C

Initially Work/Available 3 3 2

After exexution of P1 5 3 2

After exexution of P3 7 4 3

After exexution of P4 7 4 5

After exexution of P0 7 5 5

After exexution of P2 10 5 7

The Safe Sequence is P1, P3, P4, P0, P2

Maximun Resources = [10, 5, 7] Available Resources = [3, 3, 2]

Safety Algorithm

1. Let Work and Finish be vectors of length ‘m’ and ‘n’ respectively.

Initialize: Work = Available

Finish[i] = false; for i=1, 2, 3, 4….

2. Find an i such that both

a) Finish[i] = false

b) Needi <= Work

if no such i exists goto step (4)

3. Work = Work + Allocation[i]

Finish[i] = true

goto step (2)

4. if Finish [i] = true for all i; then the system is in a safe state

Working: Safety Algorithm

Resource-Request Algorithm

1. If Requesti <= Needi

Goto step (2) ; otherwise, raise an error condition, since the
process has exceeded its maximum claim.

2. If Requesti <= Available

Goto step (3); otherwise, Pi must wait, since the resources
are not available.

3. Have the system pretend to have allocated the
requested resources to process Pi by modifying the
state as follows:

a) Available = Available – Requesti

b) Allocationi = Allocationi + Requesti

c) Needi = Needi– Requesti

What will happen if process P1 requests one additional instance
of resource type A and two instances of resource type C?

Determine whether this new system state is safe?
To do so, we again execute Safety algorithm on the above data
structures.

Hence the new system state is safe, so we can
immediately grant the request for process P1 .

Thank You!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

