Bankers Algorithms

Ref: https://www.geeksforgeeks.org/bankers-algorithm-in-operating-system-2/

Write a program to implement Banker's Algorithm
for deadlock handling.

Number of processes in the system (n)

The number of resources types (m)

Maximum Resources: the number of available
resources of each type.

- Itis a 1-d array of size m

Max: maximum demand of each process Iin a
system.

- It is a 2-d array of size n*m

Allocation: the number of resources of each type
currently allocated to each process.

- It is a 2-d array of size n*m

* Need: indicates the remaining resource need of
each process.

- Itis a 2-d array of size h*m
- Need[1, J]=Max[1, jJ]-Allocation[i, j]

* Allocated: Total number of allocated resources
of each type. Addition of resource type column
wise from Allocation array.

- Itis a 1-d array of size m
 Work/Available:

- Itis a 1-d array of size m
- Work[i]=Available[i] - Allocated[i]

 One Safe Sequence

e Variations:

- Mutliple Safe Sequence
- Resource Request for Process

Number of processes, n =5 (PO, P1, P2, P3, P4)

Number of resources types, m = 3 (A, B, C)
Maximum Resources: A has 10 instances, B has 5 instances

and C has 7 instances.
Maximum Resources =[10, 5, 7]

Process Allocation Max

A B C ABC
Po 010 7 5 3
Py 2 00 3 2 2
P2 3 0 2 9 0 2
P 211 2 2 2
Pa 00 2 4 3 3

Process Need
AlB |C e Allocated =[7, 2, 5]
D, 7 4|3 * Work/Avallable =
o 1 |22 [3’ 3 2] -
& © 1910 10, 5, 7] - [7, 2, 5]
P 011
Py 4 1311

PO
P1
P2
P3
P4

Maximun Resources =[10, 5, 7] Available Resources = [3, 3, 2]

Max
A B C
7 5 3
3 2 2
9 0 2
2 2 2
4 3 3

Initially Work/Available
After exexution of P1
After exexution of P3
After exexution of P4
After exexution of PO
After exexution of P2

The Safe Sequence is P1, P3, P4, PO,

ON W N O P

Allocation

B

o r»r O O B

N NN gow P

10

R N O O 0O

2

Available

B

3
3
4
4
5
5
P

2

o o, N P

4

Need

R O N b

3

~N 01 g w NN O

R P O N w0

1. Let Work and Finish be vectors of length ‘m’ and ‘n’ respectively.

Initialize: Work = Available
Finish[i] = false; for i=1, 2, 3, 4....
2. Find an i such that both
a) Finish[i] = false
b) Need, <= Work
if no such i exists goto step (4)
3. Work = Work + Allocation]i]

Finish[i] = true
goto step (2)

4. if Finish [i] = true for all i; then the system is in a safe state

m=3, n=5
Work = Available

Step 1 of Safety Algo

Work=|3(3 |2
i} 1 2 3 4
Finish = | false(false|false|falsel|false

For i=3 vf Step 2
NEEd3=0, 1,1 53‘2
Finish [3] =false and eed < ‘b.r'#.r‘t:-rl':jl

50 P, must be kept in safe seguence

Fori=0 %< Step 2:

Needo =7,4, 3 F43 332
Finish [0] is false and Needo > Work’
So Po must wait But Need < Work

53,2 2,1,1 Step 3
Work = Work + Allocations
r/ﬁ’FB T
Work=17 14 |3)
0 1 2 3 4

Finish = | false|true|false .rtrue‘_: false

?! d’r 5 n: 1 r_n Step 3
Work = Work + Allocation,

A-B 6.

Work=!7 |5 |5)
""-u..____'_'__,_,-o-'
0. 1 2 3 4

Finish = (true) true |false|true|true
Fori=2 v /£ R
Need,=6,0,0 60,0 7,575,

Finish |2] is false and '\Ne\edzi Work./
So P, must be kept in safe sequence

Fori=1 v Step 2-

Needi1=1, 2, 2 77 332
Finish [1] is false and Need; < W__-:}fl:k/
So P; must be kept in safe sequence

Fori=4 v Step 2
Need,=4,3,1 7,43
Flnlsh [4] = false and'&u < Wﬂ
S0 P: must be kept in safe sequence

3,32 2,00 Step 3
Work = Work + Allocation;

B G-
w‘ork=(;|3 [2))

—

(RS

Finish = | falsejtrue|false|false|false

Fori=2 R ORE
Need,=6,0,0 E\Z
Finish |2] is false and(:leedz > Wo

So P2 must wait

7.4, 3 0,0,2 Sten 3
Work = Work + Allocation s

MABTC
Work =|7 |4 5\

—_—

0 1 2 3 \

Finish = | false|true [false|true -@rue_.JI

>

?I 5: 5 3: G.! '2 Step 3
Work = Work + Allocation,

A B C
Work ={10[5[7]/

01 /2,3 4
Finish= |true |true ﬁueﬂ trueftrue
Finish [i] =truefor0<i <n Step &

Fori=0 v Step 2-
Needo =7,4,3 243 7 475

Finish [0] is false and ﬂeed < ngyx
S0 Pymust be kept in 5afe sequence

Hence the system is in Safe state

The safe sequence is P1,P3, Ps ,Po,P;

1. If Request, <= Need

Goto step (2) ; otherwise, raise an error condition, since the
process has exceeded its maximum claim.

2. If Request, <= Avallable

Goto step (3); otherwise, P, must walt, since the resources
are not available.

3. Have the system pretend to have allocated the
requested resources to process P, by modifying the

state as follows:

a) Available = Available — Request;
b) Allocation;, = Allocation, + Request;
c) Need, = Need— Request,

ABC
Request,= 1,0, 2

To decide whether the request is granted we use Resource Request algorithm

Step 1
, 0,2 1, 2, v’
guest: < Need

r r 2 3! 31
uest; < Availab

Step 2

Available = Available — Requesty Step 3
Allocation; = Allocation: + Requesty
Need; = Need: - Requesty
Process Allocation Need Available
A B C A B C A B C
Po 010 7 4 3 23 O
Py 3025 | 020>
P2 302 6 0 0
Ps 211 0 1 1
Pa 00 2 4 3 1

m=3, n=5
Work = Available

Work=|2|3 |0

Step 1 of Safety Algo

0 1 2 3 4
Finish = | false(false|false|false|false
»
Fori=0 <% Step 2-
Needo =7, 4,3 4,3 2,30

Finish [0] is false and

So Po must wait

But Meed

eed, > Wor

= Work

¥

Fori=1
Need1=0, 2,0

d

0, 2,0

Step 2

2! I

Finish [1] is false and I\ Eaexdl < Work
So P; must be kept in sare sequence

Fori=3
Need.,=0, 1, 1
Finish [3] =false and

50 P, must be kept in safe sequence

Step 2

=

0;1,1 5,32
eed, < Work

7,4, 5 01,0

| Step 3
Work = Work + Allocation,

Work=1/]51|5
/-9\ 1 2 3 4

Finish = (true) true |false|true|true

4
Fori=2 v Step 2-
Need;=6,0,0 0.0 7.5
Finish | 2] is false and “Need, < Wor

50 P, must be kept in safe sequence

L
5, 3,2 2,1,1 Step 3
Work = Work + Allocations
ATB T
Work = 7|43)
0 1 2 3 4
Finish = | false|true(false chue false
-
Fori=4 v £ @ Ee?
Need,=4, 3, 1 3,1 7.4
Finish [4] =false and Need, < Wo

50 P2 must be kept in safe sequence

.

B

7,4, 3 0,02

i Step 3
Work = Work + Allocation . =F

Work=l|7 (4 |5

o0 1 2 3 4

Finish =

*
2,3,0 3,0,2 Step 3
Work = Work + Allocation;
Work =45 [3 [2
0o 1 2 3 4

Finish = | false @/E) false|false|false

k3
Fori=2 y 4 Step 2-
NEEdg =6 ' D,. 0 5, 0,0 5,3, 7
Finish | 2] is false and'Need: > Wo

So P2 must wait

falseltrue |false|true true)

7,55 3,02

Work = Work + Allocation,
B C

Work=310|5 |7

true ‘égug) true|true

Step 3

Finish= |true

¥

Finish [i] =truefor0 <i <n Step 4

Hence the system is in Safe state

-

Fori=0 Step 2

v
MNeeds = ?, 4, 3 <4, 3 7,4,
Finish [0] is false and@ < Wor

50 Pymust be kept in safe sequence

The safe sequence is P1,P3, P2 ,Po,P;

Hence the new system state is safe, so we can
Immediately grant the request for process P1 .

Thank You!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

