
CE2203 Operating Systems

 Credit : 3
 T1 : 25 Marks : Unit – I and II
 T2 : 25 Marks : Unit – III and IV
 ESE : 50 Marks : All Units (V and VI will have more weightage)

Syllabus

Unit – I : Introduction to OS

Unit – II : Process and CPU Scheduling

Unit – III : Memory Management

Unit – IV : Introduction to File system

Unit – V : I/O Management and Disk Scheduling

Unit – VI : Inter-process Communication (IPC)

Books

 William Stallings, "Operating System-Internals
and Design Principles ", Prentice Hall India,(5/e)
ISBN:81-297-0 1 094-3.

 Silberschatz, Galvin, Gagnes , "Operating
System Concepts" , John Wiley & Sons, (6/e),
ISBN:9971-51-388-9.

 Maurice J. Bach, “The Design of the Unix
Operating System”, Pearson Education,
ISBN:81-7758-770-6.

Quiz………!!!

 What is an Operating System?
 What are the tasks of OS?
 What are the types of OS?
 Examples of OS?

What is Operating System

 A program that acts as an intermediary
between a user of a computer and the
computer hardware.

 A program that controls the execution of
application programs

 An interface between applications and
hardware

Operating system goals:

 Convenience
 Makes the computer more convenient to use

 Efficiency
 Allows computer system resources to be used in

an efficient manner
 Ability to evolve

 Permit effective development, testing, and
introduction of new system functions without
interfering with service

Abstract View of System
Components

Services Provided by the
Operating System
 Program development

 Editors and debuggers
 Program execution
 Access to I/O devices
 Controlled access to files
 System access

Services Provided by the
Operating System
 Error detection and response

 internal and external hardware errors
 memory error
 device failure

 software errors
 arithmetic overflow
 access forbidden memory locations

 operating system cannot grant request of
application

Services Provided by the
Operating System
 Accounting

 collect statistics
 monitor performance
 used to anticipate future enhancements
 used for billing users

Kernel

 Portion of operating system that is in main
memory

 Contains most-frequently used functions
 Also called the nucleus

Evolution of Operating
Systems
 Serial Processing

 No operating system
 Machines run from a console with display lights

and toggle switches, input device, and printer
 Schedule book
 Setup included loading the compiler, source

program, saving compiled program, and loading
and linking

Types of OS

 Simple Batch Systems
 Multiprogramming Batched Systems
 Time-Sharing Systems
 Personal-Computer Systems
 Parallel Systems
 Distributed Systems
 Real -Time Systems

Simple Batch Systems

 Monitors

 Software that controls the running programs

 Batch jobs together

 Program branches back to monitor when finished

 Resident monitor is in main memory and available for

execution

Simple Batch Systems

 Add a card reader
 Reduce setup time by batching similar

jobs
 Automatic job sequencing –

automatically transfers control from one
job to another.

 Resident monitor
 initial control in monitor
 control transfers to job
 when job completes control

transfers back to monitor

Control Cards

 Problems
1. How does the monitor know about the nature of the job (e.g.,

Fortran versus Assembly) or which program to execute?
2. How does the monitor distinguish

(a) job from job?
(b) data from program?

 Solution
 Introduce control cards

 E.g.
Special cards that tell the resident monitor which programs to run
$JOB
$FTN
$RUN
$DATA
$END

Spooling

 Overlap I/O of one job with computation of another
job. While executing one job, the OS.

 Reads next job from card reader into a storage area on the
disk (job queue).

 Outputs printout of previous job from disk to printer.
 Job pool – data structure that allows the OS to

select which job to run next in order to increase CPU
utilization.

Uniprogramming

 Processor must wait for I/O instruction to
complete before preceding

Multiprogramming

 When one job needs to wait for I/O, the
processor can switch to the other job

Multiprogramming

Multiprogrammed Batch
Systems
 Several jobs are kept in main memory at the same time,

and the
 CPU is multiplexed among them.

OS Features Needed for
Multiprogramming
• I/O routine supplied by the system.
• Memory management – the system must
allocate the memory to several jobs.
• CPU scheduling – the system must
choose among several jobs ready to run.
• Allocation of devices.

Time-Sharing Systems–
Interactive Computing
 Using multiprogramming to handle multiple

interactive jobs
 Processor’s time is shared among multiple users
 Multiple users simultaneously access the system

through terminals

Batch Multiprogramming versus
Time Sharing

Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Source of directives to operating system
Job control language commands provided with the job

Commands entered at the terminal

Personal-Computer Systems

 Personal computers – computer system
dedicated to a single user.

 I/O devices – keyboards, mice, display
screens, small printers.

 User convenience and responsiveness.
 Can adopt technology developed for larger

operating system’ often individuals have sole
use of computer and do not need advanced
CPU utilization of protection features.

Migration of Operating-System
Concepts and Features

Parallel Systems

 Symmetric multiprocessing (SMP)
 Each processor runs an identical copy of the operating

system.
 Many processes can run at once without performance

deterioration.
 Most modern operating systems support SMP

 Asymmetric multiprocessing
 Each processor is assigned a specific task; master

processor schedules and allocates work to slave
processors.

 More common in extremely large systems

Symmetric Multiprocessing
Architecture

Real-Time Systems

 Often used as a control device in a dedicated application such as
controlling scientific experiments, medical imaging systems,
industrial control systems, and some display systems.

 Well-defined fixed-time constraints.
 Hard real-time system.

 Secondary storage limited or absent, data stored in short-term
memory, or read-only memory (ROM)

 Conflicts with time-sharing systems, not supported by general-
purpose operating systems.

 Soft real-time system
 Limited utility in industrial control or robotics
 Useful in applications (multimedia, virtual reality) requiring

advanced operating-system features.

Distributed Systems

 Distribute the computation among several physical
processors.

 Loosely coupled system – each processor has its
own local memory; processors communicate with
one another through various communications lines,
such as high-speed buses or telephone lines.

 Advantages of distributed systems.
 Resources Sharing
 Computation speed up – load sharing
 Reliability
 Communications

Distributed Systems (Cont.)

 Network Operating System
 provides file sharing
 provides communication scheme
 runs independently from other computers on the

network
 Distributed Operating System

 less autonomy between computers
 gives the impression there is a single operating

system controlling the network.

Operating-System Structures

 System Components
 Operating System Services
 System Calls
 System Programs
 System Structure
 Virtual Machines
 System Design and Implementation
 System Generation

Common System
Components
 Process Management
 Main Memory Management
 Secondary-Storage Management
 I/O System Management
 File Management
 Protection System
 Networking
 Command-Interpreter System

Process Management

 A process is a program in execution. A process
needs certain resources, including CPU time,
memory, files, and I/O devices, to accomplish its
task.

 The operating system is responsible for the following
activities in connection with process management.
 Process creation and deletion.
 process suspension and resumption.
 Provision of mechanisms for:

 process synchronization
 process communication

Main-Memory Management

 Memory is a large array of words or bytes, each with
its own address. It is a repository of quickly
accessible data shared by the CPU and I/O devices.

 Main memory is a volatile storage device. It loses its
contents in the case of system failure.

 The operating system is responsible for the following
activities in connections with memory management:
 Keep track of which parts of memory are currently being

used and by whom.
 Decide which processes to load when memory space

becomes available.
 Allocate and deallocate memory space as needed.

Secondary-Storage
Management
 Since main memory (primary storage) is volatile and

too small to accommodate all data and programs
permanently, the computer system must provide
secondary storage to back up main memory.

 Most modern computer systems use disks as the
principle on-line storage medium, for both programs
and data.

 The operating system is responsible for the following
activities in connection with disk management:
 Free space management
 Storage allocation
 Disk scheduling

I/O System Management

 The I/O system consists of:
 A buffer-caching system
 A general device-driver interface
 Drivers for specific hardware devices

File Management

 A file is a collection of related information defined by
its creator. Commonly, files represent programs
(both source and object forms) and data.

 The operating system is responsible for the following
activities in connections with file management:
 File creation and deletion.
 Directory creation and deletion.
 Support of primitives for manipulating files and directories.
 Mapping files onto secondary storage.
 File backup on stable (nonvolatile) storage media.

Protection System

 Protection refers to a mechanism for
controlling access by programs, processes,
or users to both system and user resources.

 The protection mechanism must:
 distinguish between authorized and unauthorized

usage.
 specify the controls to be imposed.
 provide a means of enforcement.

Networking (Distributed
Systems)
 A distributed system is a collection processors that

do not share memory or a clock. Each processor
has its own local memory.

 The processors in the system are connected
through a communication network.

 A distributed system provides user access to various
system resources.

 Access to a shared resource allows:
 Computation speed-up
 Increased data availability
 Enhanced reliability

Command-Interpreter
System
 Many commands are given to the operating

system by control statements which deal
with:
 process creation and management
 I/O handling
 secondary-storage management
 main-memory management
 file-system access
 protection
 networking

Command-Interpreter
System (Cont.)
 The program that reads and interprets control

statements is called variously:
 control-card interpreter
 command-line interpreter
 shell (in UNIX)

 Its function is to get and execute the next
command statement.

Operating System Services

 Program execution – system capability to load a program into
memory and to run it.

 I/O operations – since user programs cannot execute I/O
operations directly, the operating system must provide some
means to perform I/O.

 File-system manipulation – program capability to read, write,
create, and delete files.

 Communications – exchange of information between processes
executing either on the same computer or on different systems
tied together by a network. Implemented via shared memory or
message passing.

 Error detection – ensure correct computing by detecting errors in
the CPU and memory hardware, in I/O devices, or in user
programs.

Additional Operating System
Functions
Additional functions exist not for helping the user, but

rather for ensuring efficient system operations.
• Resource allocation – allocating resources to multiple users

or multiple jobs running at the same time.

• Accounting – keep track of and record which users use how
much and what kinds of computer resources for account
billing or for accumulating usage statistics.

• Protection – ensuring that all access to system resources is
controlled.

System Calls

 System calls provide the interface between a
running program and the operating system.
 Generally available as assembly-language instructions.
 Languages defined to replace assembly language for

systems programming allow system calls to be made
directly (e.g., C. Bliss, PL/360)

 Three general methods are used to pass
parameters between a running program and the
operating system.
 Pass parameters in registers.
 Store the parameters in a table in memory, and the table

address is passed as a parameter in a register.
 Push (store) the parameters onto the stack by the program,

and pop off the stack by operating system.

Process

 Program in Execution is called as Process.
 A program is passive; a process active.
 A process is an instance of a program in

execution. Batch systems work in terms of
"jobs". Many modern process concepts are still
expressed in terms of jobs, (e.g. job
scheduling), and the two terms are often used
interchangeably.

 A Process goes through various states during
execution.

Files
A (potentially) large amount of information or data

that lives a (potentially) very long time
 Often much larger than the memory of the computer
 Often much longer than any computation
 Sometimes longer than life of machine itself

Usually organized as a linear array of bytes or
blocks.

 Internal structure is imposed by application
 (Occasionally) blocks may be variable length

(Often) requiring concurrent access by multiple
processes

 Even by processes on different machines!

Shell

You communicate with a system through a command program known
as a shell.

The shell interprets the commands that you type on the keyboard.

You can use shell commands to write simple programs (scripts) to
automate many tasks.

System calls
 The mechanism used by an

application program to request service
from the operating system.

 System calls often use a special
machine code instruction which
causes the processor to change mode
(e.g. to "supervisor mode" or
"protected mode").

 This allows the OS to perform
restricted actions such as accessing
hardware devices or the memory
management unit.

e.g. : fork(), exit(),open(),close() etc.

App Software

System Software

OS

Hardware

API

Sys Call (OS) Interface

Sw-Hw phase (drivers)

Case study of Unix OS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

