
1

• Unix Commands

[CCOEW@localhost ~]$

•That “something” is called a prompt. As its name
would suggest, it is prompting you to enter a command.

•Every unix command is a sequence of letters, numbers
and characters. But there are no spaces.

•When you first log into a unix system, you are presented
with something that looks like the following:

• Shell Commands of UNIXShell Commands of UNIX

2

• Unix is also case-sensitive. This means that cat and
Cat are different commands.

• The prompt is displayed by a special program called
the shell.

• Shells accept commands, and run those commands.

• They can also be programmed in their own
language. These programs are called “shell scripts”.

3

• There are two major types of shells in unix:
 Bourne shells
 C shells.

• Steven Bourne wrote the original unix shell sh,
and most shells since then end in the letters sh to
indicate they are extentions on the original idea

• Linux comes with a Bourne shell called bash
written by the Free Software Foundation.

• bash stands for Bourne Again Shell and is the
default shell to use running linux

4

• When you first login, the prompt is displayed
by bash, and you are running your first unix
program, the bash shell.

• As long as you are logged in, the bash shell
will constantly be running.

5

• obtaining helpobtaining help

• The man command displays reference pages for
the command you specify.

• The UNIX man pages (man is short for manual)
cover every command available.

• To search for a man page, enter man followed by
the name of the command to find .

• For example:

[CCOEW@localhost ~]$: man ls

• Unix CommandsUnix Commands

6

7

• There is also a keyword function in man.

• For example;
– If you are interested in any commands that deal with

Postscript, the printer control language for Adobe
– Type man -k ps or man -k Postscript,

you’ll get a listing of all commands, system calls, and
other documented parts of unix that have the word “ps”
(or “Postscript”) in their name or short description.

• This can be very useful when you’re looking for a tool to do
something, but you don’t know it’s name-or if it even exists!

• man man ((obtaining help))

8

• cat command is used to concatenate or displays the contents
of a file.

• To use it, type cat, and then press enter key:

Prompt
Command

The text indicates what we
typed to cat

• cat

[CCOEW@localhost ~]$ cat

• This produces the correct result and runs the cat program.

İf you type this row
and then press

enter

• To end many unix command, type end-of-file command (EOF)
[hold down the key labeled “Ctrl” and press “d” (Ctrl+d)]

[CCOEW@localhost ~]$ cat
Good Morning..!!
Good Morning..!!

9

• To display the contents of a file, type
cat filename

10

• To see linux commands press Tab key,
• If you want to learn commands beginning with c
you can write c then press Tab key

[Chhaya@localhost ~]$ c

11

• Unix provides files and directories.
• A directory is like a folder: it contains pieces of paper, or files.
• A large folder can even hold other folders-directories can be

inside directories.
• In unix, the collection of directories and files is called the file

system. Initially, the file system consists of one directory,
called the “root” directory

• Inside “root” directory, there are more directories, and inside
those directories are files and yet more directories.

• Storing information

12

• Each file and each directory has a name.
• A short name for a file could be add,
• while it’s “full name” would be /home/CCOEW/add. The

full name is usually called the path.
• The path can be divide into a sequence of directories.
• For example, here is how /home/CCOEW/add is

read:

/home/CCOEW/add
The initial slash indicates the root
directory. This signifies the directory called
home. It is inside the root directory.

The second slash corresponds to the
 directory CCOEW, which is inside home.

add is inside CCOEW.

13

• A path could refer to either a directory or a filename, so add
could be either.

• All the items before the short name must be directories.

Root Directory

Sub-Directory

homeDirectoryDirectory

CCOEW

addFileFile

Directory Directory
structurestructure

14

• Looking at directories with Is

• The command ls lists files.

• If you try ls as a command, you’ll see:

 [Chhaya@localhost ~]$ ls

 If you have files, ls lists the names of files in the
directory

15

• If you want a list of files of a more active directory, try the
root directory.

[Chhaya@localhost ~]$ ls /

 bin etc install mnt root user var

 dev home lib proc tmp usr vmlinux

“/” is a parameter saying what directory you want a list for.

Some commands have special parameters called options or
switches. To see this try:

The -F is an option. It displays file types.

[Chhaya@localhost ~]$ ls –F /
 bin etc/ install/ mnt/ root/ user/ var/
 dev/ home/ lib/ proc/ tmp/ usr/ vmlinux/

16

• An option is a special kind of parameter that starts with a dash “-”
• An option modifies how the program runs, but not what the

program runs on.
• For ls, -F is an option that lets you see which ones are

directories, which ones are special files, which are programs,
and which are normal files.

• Anything with a slash “/” is a directory.
• ls -l file* displays files starting with “file”
• ls –l displays all details

17

• Many unix commands are like ls.

• They have options, which are generally one
character after a dash, and they have parameters.

• Unlike ls, some commands require certain
parameters and/or options. You have to learn
these commands.

18

• pwd (present working directory) tells you your
current directory.
– Most commands act, by default, on the current directory.

For instance, ls without any parameters displays the
contents of the current directory.

• pwdpwd

• cd
• cd is used to change directories.

• The format of this command :

 cd new-directory (where new-directory is the name of
the new directory you want).

19

• For instance, try:

[Chhaya@localhost ~]$ cd /home

/home]$

• If you omit the optional parameter directory, you’re
returned to your home, or original directory. Otherwise, cd
will change you to the specified directory.

• There are two directories used only for relative pathnames:
• The directory “.” refers to the current directory
• The directory “..” refers to the parent directory

•These are “shortcut” directories.
• The directory “..” is most useful in “backing up”:

[/usr/local/bin]$ cd ..
[/usr/local]$

20

mkdir (make directory) is used to create a new directory,
• It can take more than one parameter, interpreting each

parameter as another directory to create.

• mkdirmkdir

• rmdirrmdir

rmdir (remove directory) is used to remove a directory,
• rmdir will refuse to remove a non-existant directory,
 as well as a directory that has anything in it.

21

• The primary commands for manipulating files under unix are
cp, mv, and rm. They stand for copy, move, and remove,
respectively.

• Moving InformationMoving Information

• cp is used to copy contents of file1 to file2

cp file1 file2 (contents of file1 is copied to file2 in the same directory)

cp folder1/file1 folder2 (contents of file1 is copied to file1 in the
inside of folder2 directory)

• cpcp

22

• rm is used to remove a file.

– rm filename ---> removes a file named filename

• rmrm

• mv is used to move a file.

– rm filename ---> removes a file named filename

• looks like cp, except that it deletes the original file after
copying it.

• mv will rename a file if the second parameter is a file. If the
second parameter is a directory, mv will move the file to the
new directory, keeping it’s shortname the same.

• mvmv

23

• Some Other UNIX CommandsSome Other UNIX Commands

• The power of unix is hidden in small commands that
don’t seem too useful when used alone, but when
combined with other commands produce a system that’s
much more powerful, and flexible than most other
operating systems.

• The commands include sort, grep, more, cat, wc, spell,
diff, head, and tail.

• The Power of Unix

24

• In addition to the commands like cd, mv, and rm, you learned
in shell section, there are other commands that just operate on
files, but not the data in them.

• These include touch, chmod, du, and df.

• All of these files don’t care what is in the file.

• Operating on Files

25

Some of the things these commands manipulate:

• The time stamp: Each file has three dates associated with it.
These are creation time, last modification time and last access
time.

• The owner: the owner of files

• The group: the group of users

• The permissions: read, write, execute permissions of files. The
permissions tell unix who can access what file, or change it,
or, in the case of programs, execute it. Each of these
permissions can be toggled separately for the owner, the
group, and all the other users.

26

• touch will update the time stamps of the files listed on
the command line to the current time.

• If a file doesn’t exist, touch will create it.

• touch

 drwxr-xr-x. 2 CCOEW User1 4096 Sep 21 15:05 Desktop

ow
ner

group

others

file name

read, write, execute
permissions of files

27

 (owner) (group) (others)

 chmod [number][number][number] file1

 Number = (read)4 + (write)2 + (execute)1

• Example: Chmod 754 file1

 for owner: read, write and execute permissions (4+2+1)

 for group: read and execute permissions (4+0+1)

 for others: only read permission (4+0+0)

• chmod

• Chmod (change mode) is used to change the permissions
on a file.

28

• Commands in this section will display statistics about the
operating system, or a part of the operating system.

• System Statistics

du (disk usage) will count the amount of disk space for a given
directory, and all its subdirectories take up on the disk.

• du

• df

df (disk filling) summarizes the amount of disk space in use.
For each file system, it shows the total amount of disk space,
the amount used, the amount available, and the total capacity of
the file system that’s used.

29

• It prints the amount of time the system has been “up”—the
amount of time from the last unix boot

• uptime also gives the current time and the load average. The
load average is the average number of jobs waiting to run in a
certain time period.

• uptime

• Displays the current users of the system and when they
logged in.
• If given the parameters am i (as in: who am i), it
displays the current user.

• who

30

• There are two major commands used in unix for listing files,
cat, and more.

• What’s in the File?

• cat

• cat shows the contents of the file.

 cat [-nA] [file1 file2 . . . fileN]

• cat is not a user friendly command-it doesn’t wait for you to
read the file, and is mostly used in conjuction with pipes.

• However, cat does have some useful command-line options.
For instance, n will number all the lines in the file, and A will
show control characters.

31

 head will display the first ten lines in the listed files.
 head [- lines}] [l file1 file2 ... fileN]
• Any numeric option will be taken as the number of lines to

print, so head -15 frog will print the first fifteen lines of the
file frog

• more

• more is much more useful, and is the command that you’ll
want to use when browsing ASCII text files

more [-l] [+linenumber}] [file1 file2 ... fileN]
• The only interesting option is l, which will tell more that you
aren't interested in treating the character Ctrl-L} as a ``new
page'' character. more will start on a specified linenumber.

• head

32

• file command attempts to identify what format a particular
file is written in.

file [file1 file2 ... fileN]
• Since not all files have extentions or other easy to identify

marks, the file command performs some rudimentary
checks to try and figure out exactly what it contains.

• tail

• Like head, tail display only a fraction of the file.
• tail also accepts an option specifying the number of lines.

tail [-lines] [l file1 file2 ... fileN]

• file

33

• The commands that will alter a file, perform a certain
operation on the file, or display statistics on the file.

• Information Commands

• grep is the generalized regular expression parser.
• This is a fancy name for a utility which can only search a text
file.
grep [-nvwx] [-number] { expression} [file1 file2 ... fileN]

• grep

34

• spell is very simple unix spelling program, usually for
American English. spell is a filter, like most of the other
programs we’ve talked about.

spell [file1 file2 ... fileN]

• wc

• wc (word count) simply counts the number of words, lines,
and characters in the file(s).

wc [-clw] [file1 file2 ... fileN]

• The three parameters, clw, stand for character, line, and
word respectively, and tell wc which of the three to count.

• spell

35

• cmp compares two files.
• The first must be listed on command line, while the second

is either listed as the second parameter or is read in form
standard input.

• cmp is very simple, and merely tells you where the two
files first differ.

cmp file1 [file2]

• cmp

36

• One of the most complicated standard unix commands is
called diff.

• The GNU version of diff has over twenty command line
options. It is a much more powerful version of cmp and
shows you what the differences are instead of merely
telling you where the first one is.

diff file1 file2

• diff

37

gzip [-v#] [file1 file2 ... fileN]
gunzip [-v] [file1 file2 ... fileN]

zcat [{file1 file2 ... fileN]

• These three programs are used to compress and decompress
data.

• gzip, or GNU Zip, is the program that reads in the original
file(s) and outputs files that are smaller.

• gzip deletes the files specified on the command line and
replaces them with files that have an identical name except
that they have “.gz” appended to them.

38

• The “translate characters” command operates on standard
input-it doesn’t accept a filename as a parameter.

• Instead, it’s two parameters are arbitrary strings.
• It replaces all occurences of string1 in the input string2.
• In addition to relatively simple commands such as tr frog

toad, tr can accept more complicated commands.

tr string1 string2

• tr

39

• EditorsEditors

• There are a lot of available editors under linux operating
system.

• Amongst these vi is the most common one. One can
claim that every unix system has vi.

• However, perhaps the simplest one of the editors is
gedit.

40

Shell Scripting Shell Scripting

• Start vi scriptfilename.sh with the line #!/bin/sh

• All other lines starting with # are comments.

• make code readable by including comments

• Tell Unix that the script file is executable

$ chmod u+x scriptfilename.sh

$ chmod +x scriptfilename.sh

• Execute the shell-script

$./scriptfilename.sh

41

My First Shell Script My First Shell Script
$ vi myfirstscript.sh

 #! /bin/sh

 # The first example of a shell script

 directory=`pwd`

echo Hello World!

echo The date today is `date`

echo The current directory is $directory
$ chmod +x myfirstscript.sh

$./myfirstscript.sh

 Hello World!

 The date today is Mon Mar 8 15:20:09 EST 2010

 The current directory is /netscr/shubin/test

42

Shell Script Shell Script
• Text files that contain sequences of UNIX

commands , created by a text editor

• No compiler required to run a shell script, because the
UNIX shell acts as an interpreter when reading script
files

• After you create a shell script, you simply tell the OS
that the file is a program that can be executed, by
using the chmod command to change the files’ mode
to be executable

• Shell programs run less quickly than compiled
programs, because the shell must interpret each UNIX
command inside the executable script file before it is
executed

43

Commenting Commenting

• Lines starting with # are comments except the very
first line where #! indicates the location of the shell
that will be run to execute the script.

• On any line characters following an unquoted # are
considered to be comments and ignored.

• Comments are used to;

– Identify who wrote it and when

– Identify input variables

– Make code easy to read

– Explain complex code sections

– Version control tracking

– Record modifications

Quote CharactersQuote Characters

There are three different quote characters with different behaviour.
These are:

“ : double quote, weak quote. If a string is enclosed in “ ” the
references to variables (i.e $variable) are replaced by their
values. Also back-quote and escape \ characters are treated
specially.

‘ : single quote, strong quote. Everything inside single quotes are
taken literally, nothing is treated as special.

` : back quote. A string enclosed as such is treated as a command
and the shell attempts to execute it. If the execution is successful
the primary output from the command replaces the string.

Example: echo “Today is:” `date`

EchoEcho

Echo command is well appreciated when trying to debug scripts.

Syntax : echo {options} string

Options: -e : expand \ (back-slash) special characters

 -n : do not output a new-line at the end.

String can be a “weakly quoted” or a ‘strongly quoted’ string. In
the weakly quoted strings the references to variables are
replaced by the value of those variables before the output.

 As well as the variables some special backslash_escaped symbols
are expanded during the output. If such expansions are required
the –e option must be used.

User Input During Shell Script User Input During Shell Script
ExecutionExecution

• As shown on the hello script input from the standard input
location is done via the read command.

• Example

echo "Please enter three filenames:”

read filea fileb filec

echo “These files are used:$filea $fileb $filec”

• Each read statement reads an entire line. In the above example if
there are less than 3 items in the response the trailing variables
will be set to blank ‘ ‘.

• Three items are separated by one space.

Hello script exercise continued…Hello script exercise continued…

• The following script asks the user to enter his name
and displays a personalised hello.

 #!/bin/sh

 echo “Who am I talking to?”

 read user_name

 echo “Hello $user_name”

• Try replacing “ with ‘ in the last line to see what
happens.

Debugging your shell scriptsDebugging your shell scripts

• Generous use of the echo command will help.

• Run script with the –x parameter.

E.g. sh –x ./myscript

or set –o xtrace before running the script.

• These options can be added to the first line of the script
where the shell is defined.

e.g. #!/bin/sh -xv

Shell ProgrammingShell Programming
• Programming features of the UNIX/LINUX shell:

Shell variablesShell variables: Your scripts often need to keep values in
memory for later use. Shell variables are symbolic names that
can access values stored in memory

OperatorsOperators: Shell scripts support many operators, including
those for performing mathematical operations

Logic structuresLogic structures: Shell scripts support sequential logic (for
performing a series of commands), decision logic (for
branching from one point in a script to another), looping logic
(for repeating a command several times), and case logic (for
choosing an action from several possible alternatives)

Variables Variables

• Variables are symbolic names that represent values stored in memory

• Three different types of variables

– Global Variables: Environment and configuration variables, capitalized, such as
HOME, PATH, SHELL, USERNAME, and PWD.

When you login, there will be a large number of global System variables that are already
defined. These can be freely referenced and used in your shell scripts.

– Local Variables

Within a shell script, you can create as many new variables as needed. Any variable created in
this manner remains in existence only within that shell.

– Special Variables

Reversed for OS, shell programming, etc. such as positional parameters $0, $1 …

A few global (environment) variablesA few global (environment) variables

 SHELL Current shell

DISPLAY Used by X-Windows system to identify
the display

HOME Fully qualified name of your login
directory

PATH Search path for commands

MANPATH Search path for <man> pages

PS1 & PS2 Primary and Secondary prompt strings

USER Your login name

TERM terminal type

PWD Current working directory

Referencing VariablesReferencing Variables

Variable contents are accessed using ‘$’:

e.g. $ echo $HOME

 $ echo $SHELL

To see a list of your environment variables:

 $ printenv

or:

$ printenv | more

Defining Local VariablesDefining Local Variables

• As in any other programming language, variables can be defined and used in
shell scripts.

• Unlike other programming languages, variables in Shell Scripts are not typed.

• Examples :

a=1234 # a is NOT an integer, a string instead

b=$a+1 # will not perform arithmetic but be the string ‘1234+1’

b=`expr $a + 1 ` will perform arithmetic so b is 1235 now.

 Note : +,-,/,*,**, % operators are available.

b=abcde # b is string

b=‘abcde’ # same as above but much safer.

b=abc def # will not work unless ‘quoted’

b=‘abc def’ # i.e. this will work.

IMPORTANT NOTE: DO NOT LEAVE SPACES AROUND THE =

VariablesVariables

 vi myinputs.sh

#! /bin/sh

echo Total number of inputs: $#

echo First input: $1

echo Second input: $2

 chmod u+x myinputs.sh

 myinputs.sh HUSKER UNL CSE

Total number of inputs: 3

First input: HUSKER

Second input: UNL

Defining and EvaluatingDefining and Evaluating

 A shell variable take on the generalized form
variable=value (except in the C shell).

$ set x=37; echo $x

37

$ unset x; echo $x

x: Undefined variable.

 You can set a pathname or a command to a
variable or substitute to set the variable.

$ set mydir=`pwd`; echo $mydir

Arithmetic OperatorsArithmetic Operators

• expr supports the following operators:

• arithmetic operators: +,-,*,/,%

• comparison operators: <, <=, ==, !=, >=, >

• boolean/logical operators: &, |

• parentheses: (,)

• precedence is the same as C, Java

Arithmetic OperatorsArithmetic Operators

• vi math.sh

#!/bin/sh

count=5

count=`expr $count + 1 `

 echo $count
• chmod u+x math.sh

• math.sh
6

Arithmetic operations in shell Arithmetic operations in shell
scriptsscripts

var++ ,var-- , ++var ,
--var

post/pre
increment/decrement

+ , - add subtract

* , / , % multiply/divide,
remainder

** power of

! , ~ logical/bitwise
negation

& , | bitwise AND, OR

&& || logical AND, OR

Shell ProgrammingShell Programming

• programming features of the UNIX
shell:

Shell variablesShell variables

OperatorsOperators

Logic structuresLogic structures

Shell Logic StructuresShell Logic Structures

The four basic logic structures needed for program development

are:

Sequential logic: to execute commands in the order in

which they appear in the program

Decision logic: to execute commands only if a certain

condition is satisfied

Looping logic: to repeat a series of commands for a given

number of times

Case logic: to replace “if then/else if/else” statements when making

numerous comparisons

Conditional StatementsConditional Statements
(if constructs) (if constructs)

The most general form of the if construct is;

if command executes successfully
then

execute command
elif this command executes successfully
then

execute this command
and execute this command

else
execute default command

fi

However- elif and/or else clause can be omitted.

ExamplesExamples

SIMPLE EXAMPLE:

if date | grep “Fri”

then

echo “It’s Friday!”

fi

FULL EXAMPLE:

if [“$1” == “Monday”]

then

echo “The typed argument is Monday.”

elif [“$1” == “Tuesday”]

 then

 echo “Typed argument is Tuesday”

 else

 echo “Typed argument is neither Monday nor Tuesday”

 fi

Note: = or == will both work in the test but == is better for readability.

LoopsLoops

Loop is a block of code that is repeated a number of
times.

The repeating is performed either a pre-determined
number of times determined by a list of items in the
loop count (for loops) or until a particular condition
is satisfied (while and until loops)

To provide flexibility to the loop constructs there are
also two statements namely break and continue are
provided.

for loops for loops

Syntax:

 for arg in list

 do

 command(s)

 ...

 done

Where the value of the variable arg is set to the values provided in the
list one at a time and the block of statements executed. This is
repeated until the list is exhausted.

Example:

 for i in 3 2 5 7

 do

 echo " $i times 5 is $(($i * 5)) "

 done

The while LoopThe while Loop

• A different pattern for looping is created using the
while statement

• The while statement best illustrates how to set up a
loop to test repeatedly for a matching condition

• The while loop tests an expression in a manner
similar to the if statement

• As long as the statement inside the brackets is true,
the statements inside the do and done statements
repeat

while loops while loops

Syntax:

while this_command_execute_successfully

do

this command

and this command

done

EXAMPLE:

while test "$i" -gt 0 # can also be while [$i > 0]

 do

 i=`expr $i - 1`

 done

Looping LogicLooping Logic

• Example:

#!/bin/sh

for person in Bob Susan Joe Gerry

do

echo Hello $person

done

Output:

Hello Bob

Hello Susan

Hello Joe

Hello Gerry

 Adding integers from 1 to 10

#!/bin/sh

i=1

sum=0

while [“$i” -le 10]

 do

 echo Adding $i into the sum.

 sum=`expr $sum + $i `

 i=`expr $i + 1 `

done

echo The sum is $sum.

Switch/Case LogicSwitch/Case Logic

• The switch logic structure simplifies the
selection of a match when you have a list of
choices

• It allows your program to perform one of
many actions, depending upon the value of a
variable

Case statementsCase statements

The case structure compares a string ‘usually contained in a variable’
to one or more patterns and executes a block of code associated
with the matching pattern. Matching-tests start with the first
pattern and the subsequent patterns are tested only if no match is
not found so far.

 case argument in

pattern 1) execute this command

 and this

 and this;;

pattern 2) execute this command

 and this

 and this;;

esac

Take-Home MessageTake-Home Message

• Shell script is a high-level language that must be
converted into a low-level (machine) language by UNIX
Shell before the computer can execute it

• UNIX shell scripts, created with the vi or other text editor,
contain two key ingredients: a selection of UNIX
commands glued together by Shell programming syntax

• UNIX/Linux shells are derived from the UNIX Bourne, Korn,
and C/TCSH shells

• UNIX keeps three types of variables:
• Configuration; environmental; local

• The shell supports numerous operators, including many
for performing arithmetic operations

• The logic structures supported by the shell are sequential,
decision, looping, and case

To Script or Not to ScriptTo Script or Not to Script

• Pros
– File processing

– Glue together compelling, customized testing utilities

– Create powerful, tailor-made manufacturing tools

– Cross-platform support

– Custom testing and debugging

• Cons
– Performance slowdown

– Accurate scientific computing

Reference BooksReference Books

• Class Shell Scripting
http://oreilly.com/catalog/9780596005955/

• LINUX Shell Scripting With Bash
http://ebooks.ebookmall.com/title/linux-shell-scripting-with-bash-burtch-ebooks.htm

• Shell Script in C Shell
http://www.grymoire.com/Unix/CshTop10.txt

• Linux Shell Scripting Tutorial
http://www.freeos.com/guides/lsst/

• Bash Shell Programming in Linux
http://www.arachnoid.com/linux/shell_programming.html

• Advanced Bash-Scripting Guide
http://tldp.org/LDP/abs/html/

• Unix Shell Programming
http://ebooks.ebookmall.com/title/unix-shell-programming-kochan-wood-
ebooks.htm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

